

Swift Apprentice
Ehab Amer, Alexis Gallagher, Matt Galloway, Eli Ganim, Ben Morrow and Cosmin
Pupăză

Copyright ©2019 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without prior
written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an
“as is” basis, without warranty of any kind, express of implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Swift Apprentice

raywenderlich.com 2

Table of Contents: Overview
About the Cover 14..

What You Need 18..

Book License 19...

Book Source Code & Forums 20...

Introduction 22..

Section I: Swift Basics 26...

Chapter 1: Expressions, Variables & Constants 28.............

Chapter 2: Types & Operations 56...

Chapter 3: Basic Control Flow 75..

Chapter 4: Advanced Control Flow 92.....................................

Chapter 5: Functions 108..

Chapter 6: Optionals 126..

Section II: Collection Types 140..

Chapter 7: Arrays, Dictionaries & Sets 142............................

Chapter 8: Collection Iteration with Closures 168.............

Chapter 9: Strings 183..

Section III: Building Your Own Types 202........................

Chapter 10: Structures 204..

Chapter 11: Properties 216..

Chapter 12: Methods 230...

Chapter 13: Classes 247..

Swift Apprentice

raywenderlich.com 3

Chapter 14: Advanced Classes 263...

Chapter 15: Enumerations 285...

Chapter 16: Protocols 302..

Chapter 17: Generics 321...

Section IV: Advanced Topics 335..

Chapter 18: Access Control, Code Organization
and Testing 337..

Chapter 19: Custom Operators, Subscripts &
Keypaths 359..

Chapter 20: Pattern Matching 376..

Chapter 21: Error Handling 396...

Chapter 22: Encoding & Decoding Types 418.......................

Chapter 23: Memory Management 430..................................

Chapter 24: Value Types & Value Semantics 441.................

Chapter 25: Protocol-Oriented Programming 460.............

Chapter 26: Advanced Protocols & Generics 475...............

Conclusion 491..

Swift Apprentice

raywenderlich.com 4

Table of Contents: Extended
About the Cover 14.

About the Authors 16.

About the Editors 17.

About the Artist 17.

What You Need 18.

Book License 19.

Book Source Code & Forums 20.

Introduction 22.
Who this book is for 23.

How to use this book 23.

What’s in store 23.

Acknowledgments 24.

Section I: Swift Basics 26.

Chapter 1: Expressions, Variables & Constants 28.
How a computer works 29.

Playgrounds 35.

Getting started with Swift 39.

Printing out 40.

Arithmetic operations 41.

Math functions 46.

Naming data 47.

Increment and decrement 51.

Challenges 52.

Key points 54.

Chapter 2: Types & Operations 56.
Type conversion 57.

Swift Apprentice

raywenderlich.com 5

Strings 61.

Strings in Swift 63.

Tuples 67.

A whole lot of number types 69.

Type aliases 70.

A peek behind the curtains: Protocols 71.

Challenges 72.

Key points 74.

Chapter 3: Basic Control Flow 75.
Comparison operators 76.

The if statement 80.

Loops 86.

Challenges 89.

Key points 91.

Chapter 4: Advanced Control Flow 92.
Countable ranges 93.

For loops 94.

Switch statements 99.

Challenges 105.

Key points 107.

Chapter 5: Functions 108.
Function basics 109.

Functions as variables 117.

Commenting your functions 120.

Challenges 122.

Key points 125.

Chapter 6: Optionals 126.
Introducing nil 127.

Introducing optionals 128.

Unwrapping optionals 130.

Swift Apprentice

raywenderlich.com 6

Introducing guard 134.

Nil coalescing 136.

Challenges 137.

Key points 139.

Section II: Collection Types 140.

Chapter 7: Arrays, Dictionaries & Sets 142.
Mutable versus immutable collections 143.

Arrays 143.

What is an array? 143.

When are arrays useful? 144.

Creating arrays 144.

Accessing elements 145.

Modifying arrays 149.

Iterating through an array 152.

Running time for array operations 154.

Dictionaries 155.

Creating dictionaries 155.

Accessing values 156.

Modifying dictionaries 157.

Sets 161.

Key points 163.

Challenges 164.

Chapter 8: Collection Iteration with Closures 168.
Closure basics 169.

Custom sorting with closures 174.

Iterating over collections with closures 174.

Challenges 180.

Key points 182.

Chapter 9: Strings 183.
Strings as collections 184.

Swift Apprentice

raywenderlich.com 7

Strings as bi-directional collections 189.

Raw strings 190.

Substrings 190.

Character properties 192.

Encoding 193.

Challenges 199.

Key points 200.

Section III: Building Your Own Types 202.

Chapter 10: Structures 204.
Introducing structures 205.

Accessing members 209.

Introducing methods 210.

Structures as values 211.

Structures everywhere 212.

Conforming to a protocol 213.

Challenges 214.

Key points 215.

Chapter 11: Properties 216.
Stored properties 217.

Computed properties 219.

Type properties 222.

Property observers 223.

Lazy properties 226.

Challenges 228.

Key points 229.

Chapter 12: Methods 230.
Method refresher 231.

Introducing self 233.

Introducing initializers 235.

Introducing mutating methods 239.

Swift Apprentice

raywenderlich.com 8

Type methods 240.

Adding to an existing structure with extensions 242.

Challenges 244.

Key points 246.

Chapter 13: Classes 247.
Creating classes 248.

Reference types 249.

Understanding state and side effects 257.

Extending a class using an extension 258.

When to use a class versus a struct 259.

Challenges 260.

Key points 262.

Chapter 14: Advanced Classes 263.
Introducing inheritance 264.

Inheritance and class initialization 271.

When and why to subclass 277.

Understanding the class lifecycle 280.

Challenges 283.

Key points 284.

Chapter 15: Enumerations 285.
Your first enumeration 286.

Raw values 290.

Associated values 293.

Enumeration as state machine 295.

Iterating through all cases 296.

Enumerations without any cases 297.

Optionals 298.

Challenges 299.

Key points 301.

Chapter 16: Protocols 302.

Swift Apprentice

raywenderlich.com 9

Introducing protocols 303.

Implementing protocols 308.

Protocols in the Standard Library 314.

Challenge 319.

Key points 319.

Chapter 17: Generics 321.
Introducing generics 322.

Anatomy of generic types 324.

Arrays 329.

Dictionaries 330.

Optionals 331.

Generic function parameters 332.

Challenge 333.

Key points 334.

Section IV: Advanced Topics 335.

Chapter 18: Access Control, Code Organization and
Testing 337.

Introducing access control 339.

Organizing code into extensions 348.

Swift Package Manager 352.

Testing 352.

Challenges 356.

Key points 358.

Chapter 19: Custom Operators, Subscripts & Keypaths 359. . .
Custom operators 360.

Subscripts 365.

Keypaths 371.

Challenges 373.

Key points 375.

Swift Apprentice

raywenderlich.com 10

Chapter 20: Pattern Matching 376.
Introducing patterns 377.

Basic pattern matching 378.

Patterns 380.

Advanced patterns 384.

Programming exercises 389.

Expression pattern 391.

Challenges 394.

Key points 395.

Chapter 21: Error Handling 396.
What is error handling? 397.

First level error handling with optionals 397.

Error protocol 403.

Throwing errors 404.

Handling errors 405.

Advanced error handling 407.

Rethrows 411.

Error handling for asynchronous code 412.

Challenges 416.

Key points 417.

Chapter 22: Encoding & Decoding Types 418.
Encodable and Decodable protocols 419.

What is Codable? 419.

Automatic encoding and decoding 420.

Encoding and decoding custom types 421.

Renaming properties with CodingKeys 422.

Manual encoding and decoding 423.

Writing tests for the Encoder and Decoder 426.

Challenges 428.

Key points 429.

Swift Apprentice

raywenderlich.com 11

Chapter 23: Memory Management 430.
Reference cycles for classes 431.

Reference cycles for closures 435.

Challenges 438.

Key points 440.

Chapter 24: Value Types & Value Semantics 441.
Value types vs. reference types 442.

Defining value semantics 445.

Implementing value semantics 446.

Recipes for value semantics 454.

Challenges 454.

Key points 458.

Where to go from here? 459.

Chapter 25: Protocol-Oriented Programming 460.
Introducing protocol extensions 461.

Default implementations 462.

Understanding protocol extension dispatch 464.

Type constraints 465.

Protocol-oriented benefits 467.

Why Swift is a protocol-oriented language 471.

Challenges 473.

Key points 474.

Chapter 26: Advanced Protocols & Generics 475.
Existential protocols 476.

Non-existential protocols 476.

Recursive protocols 482.

Heterogeneous collections 484.

Type erasure 485.

Opaque return types 486.

Challenges 488.

Swift Apprentice

raywenderlich.com 12

Key points 490.

Conclusion 491.

Swift Apprentice

raywenderlich.com 13

AAbout the Cover

Flying fish have been known to soar 655 feet in a single flight, can reach heights of 20
ft above the water, and may fly as fast as 37 mph.

If you ever feel like a fish out of water trying to learn Swift, just think about the
animals on the cover of this book — if they can adapt to a completely new
environment, so can you!

raywenderlich.com 14

Dedications
"Thanks to my family for their unconditional support, and my

beautiful Merche for being a wonderful blessing."

— Ehab Amer

"To my wife and kids -- Ringae, Odysseus, and Kallisto."

— Alexis Gallagher

"To my amazing family who keep putting up with me spending
my spare hours writing books like this."

— Matt Galloway

"To my loved ones: Moriah, Lia and Ari."

— Eli Ganim

"For MawMaw. A talented cook, a loving smooch, a worthy
opponent in chicken foot; a home weaver. Her blessing abides

beyond her time."

— Ben Morrow

"To my awesome girlfriend Oana and my cute dogs Sclip and
Nori for believing in me all the way."

— Cosmin Pupăză

Swift Apprentice About the Cover

raywenderlich.com 15

About the Authors
Ehab Amer is an author of this book. He is a very enthusiastic
Lead iOS developer with a very diverse experience, from building
games to enterprise applications and POCs, especially when
exploring new technologies. In his spare time, TV shows take the
majority, followed by video games. When away from the screen, he
goes with his friends for escape room experiences or to explore the
underwater world through diving.

Alexis Gallagher is an author of this book. He is the Chief
Technology Officer of Topology Eyewear, a San Francisco startup,
which creates the most Swifty and the most bespoke glasses in the
world, right on your iPhone, using a heady cocktail of machine
learning, augmented reality, manufacturing robots and lasers. He
relishes taking the time to reconsider the fundamentals, in design,
engineering and life. He lives in his hometown of San Francisco
with his wife and kids.

Matt Galloway is an author of this book. He is a software engineer
with a passion for excellence. He stumbled into iOS programming
when it first was a thing, and he has never looked back. When not
coding, he likes to brew his own beer.

Eli Ganim Eli Ganim is an author of this book. He is an iOS
engineer who’s passionate about teaching, writing and sharing
knowledge with others. He lives in Israel with his wife and kids.

Ben Morrow is an author of this book. He delights in discovering
the unspoken nature of the world. He’ll tell you the surprising bits
while on a walk. He produces beauty by drawing out the raw
wisdom that exists within each of us.

Swift Apprentice About the Cover

raywenderlich.com 16

Cosmin Pupăză is an author of this book. He is a tutorial writer
from Romania. He has worked with more than a dozen
programming languages over the years, but none has made such a
great impact on himself as Swift. When not coding, he either plays
the guitar or studies WWII history.

About the Editors
Steven Van Impe is the technical editor of this book. Steven is a
computer science author and lecturer at the University College of
Ghent, Belgium. You can find Steven on Twitter as @pwsbooks.

Ray Fix is the final pass editor of this book. A passionate Swift
educator, enthusiast and advocate, he is actively using Swift to
create Revolve--the next generation in research microscopy at
Discover Echo Inc. He serves as the iOS tutorials topics master at
RayWenderlich.com. Ray is mostly-fluent in spoken and written
Japanese and stays healthy by walking, jogging, and playing
ultimate frisbee. When he is not doing one of those things, he is
writing and dreaming of code in Swift.

About the Artist
Vicki Wenderlich is the designer and artist of the cover of this
book. She is Ray’s wife and business partner. She is a digital artist
who creates illustrations, game art and a lot of other art or design
work for the tutorials and books on raywenderlich.com. When she’s
not making art, she loves hiking, a good glass of wine and
attempting to create the perfect cheese plate.

Swift Apprentice About the Cover

raywenderlich.com 17

WWhat You Need

To follow along with the tutorials in this book, you’ll need the following:

• A Mac running macOS Mojave 10.14 or later with the latest point release and
security patches installed. This is so you can install the latest version of the
required development tool: Xcode.

• Xcode 11 or later. Xcode is the main development tool for writing code in Swift.
You need Xcode 11 at a minimum, since that version includes Swift 5.1 Xcode
playgrounds. You can download the latest version of Xcode for free from the Mac
App Store, here: apple.co/1FLn51R

If you haven’t installed the latest version of Xcode, be sure to do that before
continuing with the book. The code covered in this book depends on Swift 5.1 and
Xcode 11 — you may get lost if you try to work with an older version or work outside
the playground environment that this book assumes.

raywenderlich.com 18

LBook License

By purchasing Swift Apprentice, you have the following license:

• You are allowed to use and/or modify the source code in Swift Apprentice in as
many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included
in Swift Apprentice in as many apps as you want, but must include this attribution
line somewhere inside your app: “Artwork/images/designs: from Swift Apprentice,
available at www.raywenderlich.com”.

• The source code included in Swift Apprentice is for your personal use only. You are
NOT allowed to distribute or sell the source code in Swift Apprentice without prior
authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without
warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and noninfringement. In no event
shall the authors or copyright holders be liable for any claim, damages or other
liability, whether in an action of contract, tort or otherwise, arising from, out of or in
connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties
of their respective owners.

raywenderlich.com 19

BBook Source Code &
Forums

If you bought the digital edition
The digital edition of this book comes with the source code for the starter and
completed projects for each chapter. These resources are included with the digital
edition you downloaded from https://store.raywenderlich.com/products/swift-
apprentice.

If you bought the print version
You can get the source code for the print edition of the book here:

https://store.raywenderlich.com/products/swift-apprentice-source-code

Forums
We’ve also set up an official forum for the book at forums.raywenderlich.com. This is
a great place to ask questions about the book or to submit any errors you may find.

Digital book editions
We have a digital edition of this book available in both ePUB and PDF, which can be
handy if you want a soft copy to take with you, or you want to quickly search for a
specific term within the book.

Buying the digital edition version of the book also has a few extra benefits: free
updates each time we update the book, access to older versions of the book, and you
can download the digital editions from anywhere, at anytime.

raywenderlich.com 20

Visit our Swift Apprentice store page here:

• https://store.raywenderlich.com/products/swift-apprentice.

And if you purchased the print version of this book, you’re eligible to upgrade to the
digital editions at a significant discount! Simply email support@razeware.com with
your receipt for the physical copy and we’ll get you set up with the discounted digital
edition version of the book.

Swift Apprentice Book Source Code & Forums

raywenderlich.com 21

IIntroduction

By Ray Fix

Welcome to the Swift Apprentice, fully updated for Xcode 11 and Swift 5.1!

In the last five years, Swift has gone from being a secret project at Apple, Inc. to a
full-blown, open source, community driven language. It continues to refine its core
goal of being a general purpose language that supports safety, speed and
expressiveness.

Despite its advanced, industrial-strength nature, Swift is a great choice for the
beginning programmer, since Xcode offers a sandbox-type environment where you
can directly execute Swift statements to try out various components of the language
— without having to create a whole app first.

Developers around the world use Swift to build thousands of amazing apps for iOS,
iPadOS, macOS, tvOS and watchOS. Swift is also being used as a server side
technology on non-Apple platforms. That means what you learn in this book will be
extremely useful as you expand your development skills and possibly work as a
developer someday.

You’ll learn about basic things like constants, values, operations and types, and move
up to more intermediate concepts like data structures, classes and enumerations.
Finally, you’ll finish off by getting in-depth knowledge about protocol extensions,
custom operators, protocol-oriented programming and generics. Swift lets you create
beautiful abstractions to solve real-world problems that you will learn about in this
book.

Swift is also a lot of fun! It’s easy to try out small snippets of code as you test new
ideas. Programming is a hands-on experience, and Swift makes it fast and easy to
both follow along with this book, as well as explore on your own.

raywenderlich.com 22

Who this book is for
If you’re a complete beginner to programming, this is the book for you! There are
short exercises and challenges throughout the book to give you some programming
practice and test your knowledge along the way.

If you want to get right into iOS app development while learning bits of the Swift
language as you go, we recommend you read through _The iOS Apprentice. The iOS
Apprentice and this book make very good companions — you can read them in
parallel, or use this book as a reference to expand on topics you read about in The iOS
Apprentice.

How to use this book
Each chapter of this book presents some theory on the topic at hand, along with
plenty of Swift code to demonstrate the practical applications of what you’re
learning.

Since this is a book for beginners, we suggest reading it in order the first time. After
that, the book will make a great reference for you to return to and refresh your
memory on particular topics.

All the code in this book is platform-neutral; that means it isn’t specific to iOS,
macOS or any other platform. The code runs in playgrounds, which you’ll learn
about in the very first chapter.

As you read through the book, you can follow along and type the code into your own
playground. That means you’ll be able to play with the code by making changes and
see the results immediately.

You’ll find mini-exercises throughout the book, which are short exercises about the
topic at hand. There are also challenges at the end of each chapter, which are either
programming questions or longer coding exercises to test your knowledge. You’ll get
the most out of this book if you follow along with these exercises and challenges.

What’s in store
This book is divided into four sections. Each section has a short introduction that
describes its chapters, their topics and the overarching themes of the section. Here’s
a brief overview of the book’s sections:

Swift Apprentice Introduction

raywenderlich.com 23

Section I: Swift Basics
The first section of the book starts at the very beginning of the computing
environment: first, how computers work, and then, how Swift’s playgrounds feature
works. With those logistics out of the way, you’ll take a tour of the fundamentals of
the Swift language and learn the basics of managing data, structuring your code,
performing simple operations and calculations, working with types.

Section II: Collection Types
Stored data is a core component of any app, whether it’s a list of friends in your
social networking app or a set of unlockable characters in your hit game. In this
section, you’ll learn how to store collections of data in Swift.

Section III: Building Your Own Types
Swift comes with basic building blocks, but its real power is in the custom things you
can build to model parts of your app. Swift has no idea about playable characters and
monsters and power-ups, for example — these are things you need to build yourself!
You’ll learn how to do that in this section.

Section IV: Advanced Topics
The final section of the book covers more advanced topics in Swift. You’ll learn about
specific things, such as how to handle problems that come up as your code runs, as
well as about more general things such as memory management, which will help you
understand some of Swift’s behind-the-scenes mechanisms.

Acknowledgments
We would like to thank many people for their assistance in making this book
possible:

• Janie Clayton For her previous work on the first, second and third editions of Swift
Apprentice.

• Erik Kerber For his previous work on the first and second editions of Swift
Apprentice.

Swift Apprentice Introduction

raywenderlich.com 24

• Our families: For bearing with us in this crazy time as we worked all hours of the
night to get this book ready for publication!

• Everyone at Apple: For producing the amazing hardware and software we know
and love, and for creating an exciting new programming language that we can use
to make apps for that hardware!

• The Swift Community: For all the people, both inside and outside of Apple, who
have worked very hard to make Swift the best computer language in the world.

• And most importantly, the readers of raywenderlich.com — especially you!
Thank you so much for reading our site and purchasing this book. Your continued
readership and support is what makes all of this possible!

Swift Apprentice Introduction

raywenderlich.com 25

Section I: Swift Basics

The chapters in this section will introduce you to the very basics of programming in
Swift. From the fundamentals of how computers work all the way up to language
structures, you’ll cover enough of the language to be able to work with data and
organize your code’s behavior.

The section begins with some groundwork to get you started:

• Chapter 1, Expressions, Variables & Constants: This is it, your whirlwind
introduction to the world of programming! You’ll begin with an overview of
computers and programming, and then say hello to Swift playgrounds, which are
where you’ll spend your coding time for the rest of this book. You’ll learn some
basics such as code comments, arithmetic operations, constants and variables.
These are some of the fundamental building blocks of any language, and Swift is
no different.

• Chapter 2, Types & Operations: You’ll learn about handling different types,
including strings which allow you to represent text. You’ll learn about converting
between types and you’ll also be introduced to type inference which makes your
life as a programmer a lot simpler. You’ll learn about tuples which allow you to
make your own types made up of multiple values of any type.

Once you have the basic data types in your head, it’ll be time to do things with that
data:

• Chapter 3, Basic Control Flow: You’ll learn how to make decisions and repeat
tasks in your programs by using syntax to control the flow. You’ll also learn about
Booleans, which represent true and false values, and how you can use these to
compare data.

• Chapter 4, Advanced Flow Control: Continuing the theme of code not running
in a straight line, you’ll learn about another loop known as the for loop. You’ll
also learn about switch statements which are particularly powerful in Swift.

raywenderlich.com 26

• Chapter 5, Functions: Functions are the basic building blocks you use to
structure your code in Swift. You’ll learn how to define functions to group your
code into reusable units.

The final chapter of the section loops a very important data type:

• Chapter 6, Optionals: This chapter covers optionals, a special type in Swift that
represents either a real value or the absence of a value. By the end of this chapter,
you’ll know why you need optionals and how to use them safely.

These fundamentals will get you Swiftly on your way, and before you know it, you’ll
be ready for the more advanced topics that follow. Let’s get started!

Swift Apprentice Section I: Swift Basics

raywenderlich.com 27

1Chapter 1: Expressions,
Variables & Constants
By Matt Galloway

Welcome to the book! In this first chapter, you’re going to learn a few basics. You’ll
learn how code works first. Then you’ll learn about the tools you’ll be using to write
Swift code.

Then, you’ll start your adventure into Swift by learning some basics such as code
comments, arithmetic operations, constants and variables. These are some of the
fundamental building blocks of any language, and Swift is no different.

First of all, you’ll cover the basic workings of computers, because it really pays to
have a grounding before you get into more complicated aspects of programming.

raywenderlich.com 28

How a computer works
You may not believe me when I say it, but a computer is not very smart on its own.
The power of a computer comes mostly from how it’s programmed by people like you
and me. If you want to successfully harness the power of a computer — and I assume
you do, if you’re reading this book — it’s important to understand how computers
work.

It may also surprise you to learn that computers themselves are rather simple
machines. At the heart of a computer is a Central Processing Unit (CPU). This is
essentially a math machine. It performs addition, subtraction, and other arithmetical
operations on numbers. Everything you see when you operate your computer is all
built upon a CPU crunching numbers many millions of times per second. Isn’t it
amazing what can come from just numbers?

The CPU stores the numbers it acts upon in small memory units called registers. The
CPU is able to read numbers into registers from the computer’s main memory, known
as Random Access Memory (RAM). It’s also able to write the number stored in a
register back into RAM. This allows the CPU to work with large amounts of data that
wouldn’t all fit in the bank of registers.

Here is a diagram of how this works:

As the CPU pulls values from RAM into its registers, it uses those values in its math
unit and stores the results back in another register.

Each time the CPU makes an addition, a subtraction, a read from RAM or a write to
RAM, it’s executing a single instruction. Each computer program does its work by
running thousands to millions of simple instructions. A complex computer program

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 29

such as your operating system, macOS (yes, that’s a computer program too!), consists
of many millions of instructions.

It’s entirely possible to write individual instructions to tell a computer what to do,
but for all but the simplest programs, it would be immensely time-consuming and
tedious. This is because most computer programs aim to do much more than simple
math — computer programs let you surf the Internet, manipulate images, and allow
you to chat with your friends.

Instead of writing individual instructions, you write source code (or just code) in a
specific programming language, which in your case will be Swift. This code is put
through a computer program called a compiler, which converts the code into those
small machine instructions the CPU knows how to execute. Each line of code you
write will turn into many instructions — some lines could end up being tens of
instructions!

Representing numbers
As you know by now, numbers are a computer’s bread and butter, the fundamental
basis of everything it does. Whatever information you send to the compiler will
eventually become a number. For example, each character within a block of text is
represented by a number. You’ll learn more about this in Chapter 2, which delves into
types including strings, the computer term for a block of text.

Images are no exception. In a computer, each image is also represented by a series of
numbers. An image is split into many thousands, or even millions, of picture
elements called pixels, where each pixel is a solid color. If you look closely at your
computer screen, you may be able to make out these blocks. That is unless you have a
particularly high-resolution display where the pixels are incredibly small! Each of
these solid color pixels is usually represented by three numbers: one for the amount
of red, one for the amount of green and one for the amount of blue. For example, an
entirely red pixel would be 100% red, 0% green and 0% blue.

The numbers the CPU works with are notably different from those you are used to.
When you deal with numbers in day-to-day life, you work with them in base 10,
otherwise known as the decimal system. Having used this numerical system for so
long, you intuitively understand how it works. So that you can appreciate the CPU’s
point of view, consider how base 10 works.

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 30

The decimal or base 10 number 423 contains three units, two tens and four
hundreds:

In the base 10 system, each digit of a number can have a value of 0, 1, 2, 3, 4, 5, 6, 7, 8
or 9, giving a total of 10 possible values for each digit. Yep, that’s why it’s called base
10!

But the true value of each digit depends on its position within the number. Moving
from right to left, each digit gets multiplied by an increasing power of 10. So the
multiplier for the far-right position is 10 to the power of 0, which is 1. Moving to the
left, the next multiplier is 10 to the power of 1, which is 10. Moving again to the left,
the next multiplier is 10 to the power of 2, which is 100. And so on.

This means each digit has a value ten times that of the digit to its right. The number
423 is equal to the following:

(0 * 1000) + (4 * 100) + (2 * 10) + (3 * 1) = 423

Binary numbers

Because you’ve been trained to operate in base 10, you don’t have to think about how
to read most numbers — it feels quite natural. But to a computer, base 10 is way too
complicated! Computers are simple-minded, remember? They like to work with base
2.

Base 2 is often called binary, which you’ve likely heard of before. It follows that base
2 has only two options for each digit: 0 or 1.

Almost all modern computers use binary because at the physical level, it’s easiest to
handle only two options for each digit. In digital electronic circuitry, which is mostly
what comprises a computer, the presence of an electrical voltage is 1 and the absence
is 0 — that’s base 2!

Note: There have been computers both real and imagined that use the ternary
numeral system, which has three possible values instead of two. Computer
scientists, engineers and dedicated hackers continue to explore the
possibilities of a base-3 computer. See https://en.wikipedia.org/wiki/
Ternary_computer and http://hackaday.com/tag/ternary-computer/.

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 31

Here’s a representation of the base 2 number 1101:

In the base 10 number system, the place values increase by a factor of 10: 1, 10, 100,
1000, etc. In base 2, they increase by a factor of 2: 1, 2, 4, 8, 16, etc. The general rule
is to multiply each digit by an increasing power of the base number — in this case,
powers of 2 — moving from right to left.

So the far-right digit represents (1 * 2^0), which is (1 * 1), which is 1. The next digit to
the left represents (0 * 2^1), which is (0 * 2), which is 0. In the illustration above, you
can see the powers of 2 on top of the blocks.

Put another way, every power of 2 either is (1) or isn’t (0) present as a component of
a binary number. The decimal version of a binary number is the sum of all the powers
of 2 that make up that number. So the binary number 1101 is equal to:

(1 * 8) + (1 * 4) + (0 * 2) + (1 * 1) = 13

And if you wanted to convert the base 10 number 423 into binary, you would simply
need to break down 423 into its component powers of 2. You would wind up with the
following:

(1 * 256) + (1 * 128) + (0 * 64) + (1 * 32) + (0 * 16) + (0 * 8)
+ (1 * 4) + (1 * 2) + (1 * 1) = 423

As you can see by scanning the binary digits in the above equation, the resulting
binary number is 110100111. You can prove to yourself that this is equal to 423 by
doing the math!

The computer term given to each digit of a binary number is a bit (a contraction of
“binary digit”). Eight bits make up a byte. Four bits is called a nibble, a play on
words that shows even old-school computer scientists had a sense of humor.

A computer’s limited memory means it can normally deal with numbers up to a
certain length. Each register, for example, is usually 32 or 64 bits in length, which is
why we speak of 32-bit and 64-bit CPUs.

Therefore, a 32-bit CPU can handle a maximum base-number of 4,294,967,295, which
is the base 2 number 11111111111111111111111111111111. That is 32 ones—count
them!

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 32

It’s possible for a computer to handle numbers that are larger than the CPU
maximum, but the calculations have to be split up and managed in a special and
longer way, much like the long multiplication you performed in school.

Hexadecimal numbers

As you can imagine, working with binary numbers can become quite tedious, because
it can take a long time to write or type them. For this reason, in computer
programming, we often use another number format known as hexadecimal, or hex
for short. This is base 16.

Of course, there aren’t 16 distinct numbers to use for digits; there are only 10. To
supplement these, we use the first six letters, a through f.

They are equivalent to decimal numbers like so:

• a = 10

• b = 11

• c = 12

• d = 13

• e = 14

• f = 15

Here’s a base 16 example using the same format as before:

Notice first that you can make hexadecimal numbers look like words. That means you
can have a little bit of fun. :]

Now the values of each digit refer to powers of 16. In the same way as before, you can
convert this number to decimal like so:

(12 * 4096) + (0 * 256) + (13 * 16) + (14 * 1) = 49374

You translate the letters to their decimal equivalents and then perform the usual
calculations.

But why bother with this?

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 33

Hexadecimal is important because each hexadecimal digit can represent precisely
four binary digits. The binary number 1111 is equivalent to hexadecimal f. It follows
that you can simply concatenate the binary digits representing each hexadecimal
digit, creating a hexadecimal number that is shorter than its binary or decimal
equivalents.

For example, consider the number c0de from above:

c = 1100
0 = 0000
d = 1101
e = 1110

c0de = 1100 0000 1101 1110

This turns out to be rather helpful, given how computers use long 32-bit or 64-bit
binary numbers. Recall that the longest 32-bit number in decimal is 4,294,967,295. In
hexadecimal, it is ffffffff. That’s much more compact and clear.

How code works
Computers have a lot of constraints, and by themselves, they can only do a small
number of things. The power that the computer programmer adds, through coding, is
putting these small things together, in the right order, to produce something much
bigger.

Coding is much like writing a recipe. You assemble ingredients (the data) and give
the computer a step-by-step recipe for how to use them.

Here’s an example:

Step 1. Load photo from hard drive.
Step 2. Resize photo to 400 pixels wide by 300 pixels high.
Step 3. Apply sepia filter to photo.
Step 4. Print photo.

This is what’s known as pseudo-code. It isn’t written in a valid computer
programming language, but it represents the algorithm that you want to use. In this
case, the algorithm takes a photo, resizes it, applies a filter and then prints it. It’s a
relatively straightforward algorithm, but it’s an algorithm nonetheless!

Swift code is just like this: a step-by-step list of instructions for the computer. These
instructions will get more complex as you read through this book, but the principle is
the same: You are simply telling the computer what to do, one step at a time.

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 34

Each programming language is a high-level, pre-defined way of expressing these
steps. The compiler knows how to interpret the code you write and convert it into
instructions that the CPU can execute.

There are many different programming languages, each with its own advantages and
disadvantages. Swift is an extremely modern language. It incorporates the strengths
of many other languages while ironing out some of their weaknesses. In years to
come, programmers will look back on Swift as being old and crusty, too. But for now,
it’s an extremely exciting language because it is quickly evolving.

This has been a brief tour of computer hardware, number representation and code,
and how they all work together to create a modern program. That was a lot to cover
in one section! Now it’s time to learn about the tools you’ll use to write in Swift as
you follow along with this book.

Playgrounds
The set of tools you use to write software is often referred to as the toolchain. The
part of the toolchain into which you write your code is known as the Integrated
Development Environment (IDE). The most commonly used IDE for Swift is called
Xcode, and that’s what you’ll be using.

Xcode includes a handy document type called a playground, which allows you to
quickly write and test code without needing to build a complete app. You’ll use
playgrounds throughout the book to practice coding, so it’s important to understand
how they work. That’s what you’ll learn during the rest of this chapter.

Creating a playground
When you open Xcode, it will greet you with the following welcome screen:

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 35

If you don’t see this screen, it’s most likely because the “Show this window when
Xcode launches” option was unchecked. You can also open the screen by pressing
Command-Shift-1 or clicking Window ▸ Welcome to Xcode from the menu bar.

From the welcome screen, you can jump quickly into a playground by clicking on Get
started with a playground.

Click on that now and Xcode will present you with a choice of templates.

The platform you choose simply defines which version of the template Xcode will use
to create the playground. Currently, your options are iOS, macOS or tvOS. Each
platform comes with its own environment set up and ready for you to begin playing
around with code.

For the purposes of this book, choose whichever platform you wish. You won’t be
writing any platform-specific code; instead, you’ll be learning the core principles of
the Swift language.

Select the Blank template and click Next. Xcode will now ask you to name the
playground and select a location to save it.

The name is merely cosmetic and for your own use; when you create your
playgrounds, feel free to choose names that will help you remember what they’re
about. For example, while you’re working through Chapter 1, you may want to name
your playground Chapter1.

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 36

Click Create to create and save the playground. Xcode then presents you with the
playground, like so:

Even blank playgrounds don’t start entirely empty but have some basic starter code
to get you going. Don’t worry — you’ll soon learn what this code means.

Playgrounds overview
At first glance, a playground may look like a rather fancy text editor. Well, here’s
some news for you: It is essentially just that!

The previous screenshot highlights the first and most important things to know
about:

1. Source editor: This is the area in which you’ll write your Swift code. It’s much
like a text editor such as Notepad or TextEdit. You’ll notice the use of what’s
known as a monospaced font, meaning all characters are the same width. This
makes the code much easier to read and format.

2. Results sidebar: This area shows the results of your code. You’ll learn more
about how code is executed as you read through the book. The results sidebar will
be the main place you’ll look to confirm your code is working as expected.

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 37

3. Execution control: This control lets you run the entire playground file or clear
state so you can run it again. By default, playgrounds do not execute
automatically. You can change this setting to execute with every change by long
pressing on it and selecting "Automatically Run".

4. Activity viewer: This shows the status of the playground. In the screenshot, it
shows that the playground has finished executing and is ready to handle more
code in the source editor. When the playground is executing, this viewer will
indicate this with a spinner.

5. Panel controls: These toggle switches show and hide three panels, one that
appears on the left, one on the bottom and one on the right. The panels each
display extra information that you may need to access from time to time. You’ll
usually keep them hidden, as they are in the screenshot. You’ll learn more about
each of these panels as you move through the book.

You can turn on line numbers on the left side of the source editor by clicking Xcode
▸ Preferences... ▸ Text Editing ▸ Line Numbers. Line numbers can be very useful
when you want to refer to parts of your code.

Playgrounds execute the code in the source editor from top to bottom. The play
button floats next to each line as you move the cursor over it and lets you run from
the beginning of the file upto and including the line you click. To force a re-
execution, you can click on the Execution control button twice--once to stop and
clear it and again to rerun.

Once the playground execution is finished, Xcode updates the results sidebar to show
the results of the corresponding line in the source editor. You’ll see how to interpret
the results of your code as you work through the examples in this book.

Note: Under certain conditions, you may find Xcode 11 incorrectly disables
line-based execution. In these cases, just use the execution control button to
run the entire playground.

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 38

Getting started with Swift
Now that you know how computers work and know what this "playground" thing is,
it’s time to start writing some Swift!

You may wish to follow along with your own playground. Simply create one and type
in the code as you go!

First up is something that helps you organize your code. Read on!

Code comments
The Swift compiler generates executable code from your source code. To accomplish
this, it uses a detailed set of rules you will learn about in this book. Sometimes these
details can obscure the big picture of why you wrote your code a certain way or even
what problem you are solving. To prevent this, it’s good to document what you wrote
so that the next human who passes by will be able to make sense of your work. That
next human, after all, may be a future you.

Swift, like most other programming languages, allows you to document your code
through the use of what are called comments. These allow you to write any text
directly along side your code and is ignored by the compiler.

The first way to write a comment is like so:

// This is a comment. It is not executed.

This is a single line comment.

You could stack these up like so to allow you to write paragraphs:

// This is also a comment.
// Over multiple lines.

However, there is a better way to write comments which span multiple lines. Like so:

/* This is also a comment.
 Over many..
 many...
 many lines. */

This is a multi-line comment. The start is denoted by /* and the end is denoted by
*/. Simple!

Swift also allows you to nest comments, like so:

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 39

/* This is a comment.

 /* And inside it
 is
 another comment.
 */

 Back to the first.
 */

This might not seem particularly interesting, but it may be if you have seen other
programming languages. Many do not allow you to nest comments like this as when
it sees the first */ it thinks you are closing the first comment. You should use code
comments where necessary to document your code, explain your reasoning, or
simply to leave jokes for your colleagues. :]

Printing out
It’s also useful to see the results of what your code is doing. In Swift, you can achieve
this through the use of the print command.

print will output whatever you want to the debug area (sometimes referred to as
the console).

For example, consider the following code:

print("Hello, Swift Apprentice reader!")

This will output a nice message to the debug area, like so:

You can hide or show the debug area using the button highlighted with the red box in
the picture above. You can also click View ▸ Debug Area ▸ Show Debug Area to do
the same thing.

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 40

Arithmetic operations
When you take one or more pieces of data and turn them into another piece of data,
this is known as an operation.

The simplest way to understand operations is to think about arithmetic. The addition
operation takes two numbers and converts them into the sum of the two numbers.
The subtraction operation takes two numbers and converts them into the difference
of the two numbers.

You’ll find simple arithmetic all over your apps; from tallying the number of “likes”
on a post, to calculating the correct size and position of a button or a window,
numbers are indeed everywhere!

In this section, you’ll learn about the various arithmetic operations that Swift has to
offer by considering how they apply to numbers. In later chapters, you see operations
for types other than numbers.

Simple operations
All operations in Swift use a symbol known as the operator to denote the type of
operation they perform. Consider the four arithmetic operations you learned in your
early school days: addition, subtraction, multiplication and division. For these
simple operations, Swift uses the following operators:

• Add: +

• Subtract: -

• Multiply: *

• Divide: /

These operators are used like so:

2 + 6
10 - 2
2 * 4
24 / 3

Each of these lines is an expression, meaning each has a value. In these cases, all
four expressions have the same value: 8. Notice how the code looks similar to how
you would write the operations out on pen and paper. You can enter these straight
into your playground.

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 41

The line numbers in light blue are ones that have not yet run. To run your code, click
on the light blue play button on the last line next to the cursor.

Upon running, the playground removes the blue sidebar from the lines that have run,
you can also see the values of these expressions in the right-hand bar, known as the
results sidebar.

If you want, you can remove the whitespace surrounding the operator:

2+6

When you make this change, the blue sidebar reappears to indicate which lines need
to be rerun. You can run again by clicking on the blue arrow or by using the shortcut
Shift-Enter.

Note: Shift-Enter runs all of the statements upto the current cursor and
advances to the next line. This makes it easy to keep hitting Shift-Enter and
run the whole playground step-by-step. Its a great shortcut to commit to
muscle memory.

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 42

Removing the whitespace is an all or nothing, you can’t mix styles. For example:

2+6 // OK
2 + 6 // OK
2 +6 // ERROR
2+ 6 // ERROR

The first error will be:

Consecutive statements on a line must be separated by ';'

And for the second error you’ll see:

'+' is not a postfix unary operator

You don’t need to understand these error messages at the moment. Just be aware
that you must have whitespace on both sides of the operator or no whitespace on
either side!

It’s often easier to read expressions when you have white space on either side.

Decimal numbers
All of the operations above have used whole numbers, more formally known as
integers. However, as you will know, not every number is whole.

As an example, consider the following:

22 / 7

This, you may be surprised to know, results in the number 3. This is because if you
only use integers in your expression, Swift makes the result an integer also. In this
case, the result is rounded down to the next integer.

You can tell Swift to use decimal numbers by changing it to the following:

22.0 / 7.0

This time, the result is 3.142857142857143 as expected.

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 43

The remainder operation
The four operations you’ve seen so far are easy to understand because you’ve been
doing them for most of your life. Swift also has more complex operations you can
use, all of them standard mathematical operations, just less common ones. Let’s turn
to them now.

The first of these is the remainder operation, also called the modulo operation. In
division, the denominator goes into the numerator a whole number of times, plus a
remainder. This remainder is exactly what the remainder operation gives. For
example, 10 modulo 3 equals 1, because 3 goes into 10 three times, with a remainder
of 1.

In Swift, the remainder operator is the % symbol, and you use it like so:

28 % 10

In this case, the result equals 8, because 10 goes into 28 twice with a remainder of 8.
If you want to compute the same thing using decimal numbers you do it like so:

(28.0).truncatingRemainder(dividingBy: 10.0)

This computes 28 divided by 10 and then truncates the result, chopping off any
extra decimals and returns the remainder of that. The result is identical to % when
there are no decimals.

Shift operations
The shift left and shift right operations take the binary form of a decimal number
and shift the digits left or right, respectively. Then they return the decimal form of
the new binary number.

For example, the decimal number 14 in binary, padded to 8 digits, is 00001110.
Shifting this left by two places results in 00111000, which is 56 in decimal.

Here’s an illustration of what happens during this shift operation:

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 44

The digits that come in to fill the empty spots on the right become 0. The digits that
fall off the end on the left are lost.

Shifting right is the same, but the digits move to the right.

The operators for these two operations are as follows:

• Shift left: <<

• Shift right: >>

These are the first operators you’ve seen that contain more than one character.
Operators can contain any number of characters, in fact.

Here’s an example that uses both of these operators:

1 << 3

32 >> 2

Both of these values equal the number 8.

One reason for using shifts is to make multiplying or dividing by powers of two easy.
Notice that shifting left by one is the same as multiplying by two, shifting left by two
is the same as multiplying by four, and so on.

Likewise, shifting right by one is the same as dividing by two, shifting right by two is
the same as dividing by four, and so on.

In the old days, code often made use of this trick because shifting bits is much
simpler for a CPU to do than complex multiplication and division arithmetic.
Therefore the code was quicker if it used shifting.

However these days, CPUs are much faster and compilers can even convert
multiplication and division by powers of two into shifts for you. So you’ll see shifting
only for binary twiddling, which you probably won’t see unless you become an
embedded systems programmer!

Order of operations
Of course, it’s likely that when you calculate a value, you’ll want to use multiple
operators. Here’s an example of how to do this in Swift:

((8000 / (5 * 10)) - 32) >> (29 % 5)

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 45

Note the use of parentheses, which in Swift serve two purposes: to make it clear to
anyone reading the code — including yourself — what you meant, and to
disambiguate. For example, consider the following:

350 / 5 + 2

Does this equal 72 (350 divided by 5, plus 2) or 50 (350 divided by 7)? Those of you
who paid attention in school will be screaming “72!” And you would be right!

Swift uses the same reasoning and achieves this through what’s known as operator
precedence. The division operator (/) has a higher precedence than the addition
operator (+), so in this example, the code executes the division operation first.

If you wanted Swift to do the addition first — that is, to return 50 — then you could
use parentheses like so:

350 / (5 + 2)

The precedence rules follow the same that you learned in math at school. Multiply
and divide have the same precedence, higher than add and subtract which also have
the same precedence.

Math functions
Swift also has a vast range of math functions for you to use when necessary. You
never know when you need to pull out some trigonometry, especially when you’re a
pro at Swift and writing those complex games!

Note: Not all of these functions are part of Swift. Some are provided by the
operating system. Don’t remove the import statement that comes as part of
the playground template or Xcode will tell you it can’t find these functions.

For example, consider the following:

sin(45 * Double.pi / 180)
// 0.7071067811865475

cos(135 * Double.pi / 180)
// -0.7071067811865475

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 46

These convert an angle from degrees to radians and then compute the sine and
cosine respectively. Notice how both make use of Double.pi which is a constant
Swift provides us, ready-made with pi to as much precision as is possible by the
computer. Neat!

Then there’s this:

(2.0).squareRoot()
// 1.414213562373095

This computes the square root of 2. Did you know that the sine of 45° equals 1 over
the square root of 2? Try it out!

Not mentioning these would be a shame:

max(5, 10)
// 10

min(-5, -10)
// -10

These compute the maximum and minimum of two numbers respectively.

If you’re particularly adventurous you can even combine these functions like so:

max((2.0).squareRoot(), Double.pi / 2)
// 1.570796326794897

Naming data
At its simplest, computer programming is all about manipulating data. Remember,
everything you see on your screen can be reduced to numbers that you send to the
CPU. Sometimes you represent and work with this data as various types of numbers,
but other times the data comes in more complex forms such as text, images and
collections.

In your Swift code, you can give each piece of data a name you can use to refer to it
later. The name carries with it an associated type that denotes what sort of data the
name refers to, such as text, numbers, or a date. You’ll learn about some of the basic
types in this chapter, and you’ll encounter many other types throughout this book.

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 47

Constants
Take a look at this:

let number: Int = 10

This declares a constant called number which is of type Int. Then it sets the value of
the constant to the number 10.

Note: Thinking back to operators, here’s another one. The equals sign, =, is
known as the assignment operator.

The type Int can store integers. The way you store decimal numbers is like so:

let pi: Double = 3.14159

This is similar to the Int constant, except the name and the type are different. This
time, the constant is a Double, a type that can store decimals with high precision.

There’s also a type called Float, short for floating point, that stores decimals with
lower precision than Double. In fact, Double has about double the precision of
Float, which is why it’s called Double in the first place. A Float takes up less
memory than a Double but generally, memory use for numbers isn’t a huge issue and
you’ll see Double used in most places.

Once you’ve declared a constant, you can’t change its data. For example, consider the
following code:

number = 0

This code produces an error:

Cannot assign to value: 'number' is a 'let' constant

In Xcode, you would see the error represented this way:

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 48

Constants are useful for values that aren’t going to change. For example, if you were
modeling an airplane and needed to refer to the total number of seats installed, you
could use a constant.

You might even use a constant for something like a person’s age. Even though their
age will change as their birthday comes, you might only be concerned with their age
at this particular instant.

Variables
Often you want to change the data behind a name. For example, if you were keeping
track of your bank account balance with deposits and withdrawals, you might use a
variable rather than a constant.

If your program’s data never changed, then it would be a rather boring program! But
as you’ve seen, it’s not possible to change the data behind a constant.

When you know you’ll need to change some data, you should use a variable to
represent that data instead of a constant. You declare a variable in a similar way, like
so:

var variableNumber: Int = 42

Only the first part of the statement is different: You declare constants using let,
whereas you declare variables using var.

Once you’ve declared a variable, you’re free to change it to whatever you wish, as
long as the type remains the same. For example, to change the variable declared
above, you could do this:

variableNumber = 0
variableNumber = 1_000_000

To change a variable, you simply assign it a new value.

Note: In Swift, you can optionally use underscores to make larger numbers
more human-readable. The quantity and placement of the underscores is up to
you.

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 49

This is a good time to take a closer look at the results sidebar of the playground.
When you type the code above into a playground, you’ll see that the results sidebar
on the right shows the current value of variableNumber at each line:

The results sidebar will show a relevant result for each line if one exists. In the case
of a variable or constant, the result will be the new value, whether you’ve just
declared a constant, or declared or reassigned a variable.

Using meaningful names
Always try to choose meaningful names for your variables and constants. Good
names act as documentation and make your code easy to read.

A good name specifically describes the role of a variable or constant. Here are some
examples of good names:

• personAge

• numberOfPeople

• gradePointAverage

Often a bad name is simply not descriptive enough. Here are some examples of bad
names:

• a

• temp

• average

The key is to ensure that you’ll understand what the variable or constant refers to
when you read it again later. Don’t make the mistake of thinking you have an
infallible memory! It’s common in computer programming to look back at your own
code as early as a day or two later and have forgotten what it does. Make it easier for
yourself by giving your variables and constants intuitive, precise names.

Also, note how the names above are written. In Swift, it is common to camel case
names. For variables and constants, follow these rules to properly case your names:

• Start with a lowercase letter.

• If the name is made up of multiple words, join them together and start every other
word with an uppercase letter.

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 50

• If one of these words is an abbreviation, write the entire abbreviation in the same
case (e.g.: sourceURL and urlDescription)

In Swift, you can even use the full range of Unicode characters. For example, you
could declare a variable like so:

var ! " : Int = -1

That might make you laugh, but use caution with special characters like these. They
are harder to type and likely to bring you more pain than amusement.

Special characters like these probably make more sense in data that you store rather
than in Swift code; you’ll learn more about Unicode in Chapter 9, “Strings.”

Increment and decrement
A common operation that you will need is to be able to increment or decrement a
variable. In Swift, this is achieved like so:

var counter: Int = 0

counter += 1
// counter = 1

counter -= 1
// counter = 0

The counter variable begins as 0. The increment sets its value to 1, and then the
decrement sets its value back to 0.

These operators are similar to the assignment operator (=), except they also perform
an addition or subtraction. They take the current value of the variable, add or
subtract the given value and assign the result to the variable.

In other words, the code above is shorthand for the following:

var counter: Int = 0
counter = counter + 1
counter = counter - 1

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 51

Similarly, the *= and /= operators do the equivalent for multiplication and division,
respectively:

counter = 10

counter *= 3 // same as counter = counter * 3
// counter = 30

counter /= 2 // same as counter = counter / 2
// counter = 15

Mini-exercises
If you haven’t been following along with the code in Xcode, now’s the time to create
a new playground and try some exercises to test yourself!

1. Declare a constant of type Int called myAge and set it to your age.

2. Declare a variable of type Double called averageAge. Initially, set it to your own
age. Then, set it to the average of your age and my own age of 30.

3. Create a constant called testNumber and initialize it with whatever integer you’d
like. Next, create another constant called evenOdd and set it equal to testNumber
modulo 2. Now change testNumber to various numbers. What do you notice
about evenOdd?

4. Create a variable called answer and initialize it with the value 0. Increment it by
1. Add 10 to it. Multiply it by 10. Then, shift it to the right by 3. After all of these
operations, what’s the answer?

Challenges
Before moving on, here are some challenges to test your knowledge of variables and
constants. It is best if you try to solve them yourself, but solutions are available if
you get stuck. These came with the download or are available at the printed book’s
source code link listed in the introduction.

Challenge 1: Variables
Declare a constant Int called myAge and set it equal to your age. Also declare an Int
variable called dogs and set it equal to the number of dogs you own. Then imagine
you bought a new puppy and increment the dogs variable by one.

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 52

Challenge 2: Make it compile
Given the following code:

age: Int = 16
print(age)
age = 30
print(age)

Modify the first line so that it compiles. Did you use var or let?

Challenge 3: Compute the answer
Consider the following code:

let x: Int = 46
let y: Int = 10

Work out what answer equals when you add the following lines of code:

// 1
let answer1: Int = (x * 100) + y
// 2
let answer2: Int = (x * 100) + (y * 100)
// 3
let answer3: Int = (x * 100) + (y / 10)

Challenge 4: Add parentheses
Add as many parentheses to the following calculation, ensuring that it doesn’t
change the result of the calculation.

8 - 4 * 2 + 6 / 3 * 4

Challenge 5: Average rating
Declare three constants called rating1, rating2 and rating3 of type Double and
assign each a value. Calculate the average of the three and store the result in a
constant named averageRating.

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 53

Challenge 6: Electrical power
The power of an electrical appliance can be calculated by multiplying the voltage by
the current. Declare a constant named voltage of type Double and assign it a value.
Then declare a constant called current of type Double and assign it a value. Finally
calculate the power of the electrical appliance you’ve just created storing it in a
constant called power of type Double.

Challenge 7: Electrical resistance
The resistance of such an appliance can be then calculated (in a long-winded way) as
the power divided by the current squared. Calculate the resistance and store it in a
constant called resistance of type Double.

Challenge 8: Random integer
You can create a random integer number by using the function arc4random(). This
creates a number anywhere between 0 and 4294967295. You can use the modulo
operator to truncate this random number to whatever range you want. Declare a
constant randomNumber and assign it a random number generated with
arc4random(). Then calculate a constant called diceRoll and use the random
number you just found to create a random number between 1 and 6.

Challenge 9: Quadratic equations
A quadratic equation is something of the form a⋅x² + b⋅x + c = 0. The values of x
which satisfy this can be solved by using the equation x = (-b ± sqrt(b² -
4⋅a⋅c)) / (2⋅a). Declare three constants named a, b and c of type Double. Then
calculate the two values for x using the equation above (noting that the ± means plus
or minus — so one value of x for each). Store the results in constants called root1
and root2 of type Double.

Key points
• Computers, at their most fundamental level, perform simple mathematics.

• A programming language allows you to write code, which the compiler converts
into instructions that the CPU can execute.

• Computers operate on numbers in base 2 form, otherwise known as binary.

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 54

• The IDE you use to write Swift code is named Xcode.

• By providing immediate feedback about how code is executing, playgrounds allow
you to write and test Swift code quickly and efficiently.

• Code comments are denoted by a line starting with // or multiple lines bookended
with /* and */.

• Code comments can be used to document your code.

• You can use print to write things to the debug area.

• The arithmetic operators are:

Add: +
Subtract: -
Multiply: *
Divide: /
Remainder: %

• Swift makes many functions min(), max(), squareRoot(), sin() and cos(). You
will learn many more throughout this book.

• Constants and variables give names to data.

• Once you’ve declared a constant, you can’t change its data, but you can change a
variable’s data at any time.

• Always give variables and constants meaningful names to save yourself and your
colleagues headaches later.

• Operators to perform arithmetic and then assign back to the variable:

Add and assign: +=
Subtract and assign: -=
Multiply and assign: *=
Divide and assign: /=

Swift Apprentice Chapter 1: Expressions, Variables & Constants

raywenderlich.com 55

2Chapter 2: Types &
Operations
By Matt Galloway

Now that you know how to perform basic operations and manipulate data using
these operations, it’s time to learn more about types. Formally, a type describes a
set of values and the operations that can be performed on them. In this chapter,
you’ll learn about handling different types, including strings which allow you to
represent text. You’ll learn about converting between types and you’ll also be
introduced to type inference which makes your life as a programmer a lot simpler.
Finally, you’ll learn about tuples which allow you to make your own types made up of
multiple values of any type.

raywenderlich.com 56

Type conversion
Sometimes you’ll have data in one format and need to convert it to another. The
naïve way to attempt this would be like so:

var integer: Int = 100
var decimal: Double = 12.5
integer = decimal

Swift will complain if you try to do this and spit out an error on the third line:

Cannot assign value of type 'Double' to type 'Int'

Some programming languages aren’t as strict and will perform conversions like this
silently. Experience shows this kind of silent, automatic conversion is a source of
software bugs and often hurts performance. Swift disallows you from assigning a
value of one type to another and avoids these issues.

Remember, computers rely on us programmers to tell them what to do. In Swift, that
includes being explicit about type conversions. If you want the conversion to happen,
you have to say so!

Instead of simply assigning, you need to explicitly say that you want to convert the
type. You do it like so:

integer = Int(decimal)

The assignment on the third line now tells Swift unequivocally that you want to
convert from the original type, Double, to the new type, Int.

Note: In this case, assigning the decimal value to the integer results in a loss
of precision: The integer variable ends up with the value 12 instead of 12.5.
This is why it’s important to be explicit. Swift wants to make sure you know
what you’re doing and that you may end up losing data by performing the type
conversion.

Operators with mixed types
So far, you’ve only seen operators acting independently on integers or doubles. But
what if you have an integer that you want to multiply by a double?

Swift Apprentice Chapter 2: Types & Operations

raywenderlich.com 57

You might think you could do it like this:

let hourlyRate: Double = 19.5
let hoursWorked: Int = 10
let totalCost: Double = hourlyRate * hoursWorked

If you try that, you’ll get an error on the final line:

Binary operator '*' cannot be applied to operands of type
'Double' and 'Int'

This is because in Swift, you can’t apply the * operator to mixed types. This rule also
applies to the other arithmetic operators. It may seem surprising at first, but Swift is
being rather helpful.

Swift forces you to be explicit about what you mean when you want an Int
multiplied by a Double, because the result can be only one type. Do you want the
result to be an Int, converting the Double to an Int before performing the
multiplication? Or do you want the result to be a Double, converting the Int to a
Double before performing the multiplication?

In this example, you want the result to be a Double. You don’t want an Int, because
in that case, Swift would convert the hourlyRate constant into an Int to perform
the multiplication, rounding it down to 19 and losing the precision of the Double.

You need to tell Swift you want it to consider the hoursWorked constant to be a
Double, like so:

let totalCost: Double = hourlyRate * Double(hoursWorked)

Now, each of the operands will be a Double when Swift multiplies them, so
totalCost is a Double as well.

Type inference
Up to this point in this book, each time you’ve seen a variable or constant declared
it’s been accompanied by a type annotation. You may be asking yourself why you
need to bother writing the : Int and : Double, since the right hand side of the
assignment is already an Int or a Double. It’s redundant, to be sure; your crazy-
clever brain can see this without too much work.

Swift Apprentice Chapter 2: Types & Operations

raywenderlich.com 58

It turns out the Swift compiler can deduce this as well. It doesn’t need you to tell it
the type all the time — it can figure it out on its own. This is done through a process
called type inference. Not all programming languages have this, but Swift does, and
it’s a key component of Swift’s power as a language.

So, you can simply drop the type in most places where you see one.

For example, consider the following constant declaration:

let typeInferredInt = 42

Sometimes it’s useful to check the inferred type of a variable or constant. You can do
this in a playground by holding down the Option key and clicking on the variable or
constant’s name. Xcode will display a popover like this:

Xcode tells you the inferred type by giving you the declaration you would have had to
use if there were no type inference. In this case, the type is Int.

It works for other types, too:

let typeInferredDouble = 3.14159

Option-clicking on this reveals the following:

You can see from this that type inference isn’t magic. Swift is simply doing what your
brain does very easily. Programming languages that don’t use type inference can
often feel verbose, because you need to specify the often obvious type each time you
declare a variable or constant.

Swift Apprentice Chapter 2: Types & Operations

raywenderlich.com 59

Note: In later chapters, you’ll learn about more complex types where
sometimes Swift can’t infer the type. That’s a pretty rare case though, and
you’ll see type inference used for most of the code examples in this book —
except in cases where we want to highlight the type for you.

Sometimes you want to define a constant or variable and ensure it’s a certain type,
even though what you’re assigning to it is a different type. You saw earlier how you
can convert from one type to another. For example, consider the following:

let wantADouble = 3

Here, Swift infers the type of wantADouble as Int. But what if you wanted Double
instead?

The first thing you could do is the following:

let actuallyDouble = Double(3)

This is like you saw before with type conversion.

Another option would be to not use type inference at all and do the following:

let actuallyDouble: Double = 3

There is a third option, like so:

let actuallyDouble = 3 as Double

This uses a new keyword you haven’t seen before, as. It also performs a type
conversion, and you will see this throughout the book.

Note: Literal values like 3 don’t have a type. It’s only when using them in an
expression or assigning them to a constant or variable that Swift infers a type
for them.

A literal number value that doesn’t contain a decimal point can be used as an
Int as well as a Double. This is why you’re allowed to assign the value 3 to
constant actuallyDouble.

Literal number values that do contain a decimal point cannot be integers. This
means we could have avoided this entire discussion had we started with:

let wantADouble = 3.0

Sorry! :]

Swift Apprentice Chapter 2: Types & Operations

raywenderlich.com 60

Mini-exercises
1. Create a constant called age1 and set it equal to 42. Create a constant called age2

and set it equal to 21. Check using Option-click that the type for both has been
inferred correctly as Int.

2. Create a constant called avg1 and set it equal to the average of age1 and age2
using the naïve operation (age1 + age2) / 2. Use Option-click to check the
type and check the result of avg1. Why is it wrong?

3. Correct the mistake in the above exercise by converting age1 and age2 to type
Double in the formula. Use Option-click to check the type and check the result of
avg1. Why is it now correct?

Strings
Numbers are essential in programming, but they aren’t the only type of data you
need to work with in your apps. Text is also an extremely common data type, such as
people’s names, their addresses, or even the words of a book. All of these are
examples of text that an app might need to handle.

Most computer programming languages store text in a data type called a string. This
chapter introduces you to strings, first by giving you background on the concept of
strings and then by showing you how to use them in Swift.

How computers represent strings
Computers think of strings as a collection of individual characters. In Chapter 1 of
this book, you learned that numbers are the language of CPUs, and all code, in
whatever programming language, can be reduced to raw numbers. Strings are no
different!

That may sound very strange. How can characters be numbers? At its base, a
computer needs to be able to translate a character into the computer’s own language,
and it does so by assigning each character a different number. This forms a two-way
mapping from character to number that is called a character set.

When you press a character key on your keyboard, you are actually communicating
the number of the character to the computer. Your word processor application
converts that number into a picture of the character and finally, presents that picture
to you.

Swift Apprentice Chapter 2: Types & Operations

raywenderlich.com 61

Unicode
In isolation, a computer is free to choose whatever character set mapping it likes. If
the computer wants the letter a to equal the number 10, then so be it. But when
computers start talking to each other, they need to use a common character set.

If two computers used different character sets, then when one computer transferred
a string to the other, they would end up thinking the strings contained different
characters.

There have been several standards over the years, but the most modern standard is
Unicode. It defines the character set mapping that almost all computers use today.

Note: You can read more about Unicode at its official website, http://
unicode.org/.

As an example, consider the word cafe. The Unicode standard tells us that the letters
of this word should be mapped to numbers like so:

The number associated with each character is called a code point. So in the example
above, c uses code point 99, a uses code point 97, and so on.

Of course, Unicode is not just for the simple Latin characters used in English, such as
c, a, f and e. It also lets you map characters from languages around the world. The
word cafe, as you’re probably aware, is derived from French, in which it’s written as
café. Unicode maps these characters like so:

Swift Apprentice Chapter 2: Types & Operations

raywenderlich.com 62

And here’s an example using Chinese characters (this, according to Google translate,
means “Computer Programming”):

You’ve probably heard of emojis, which are small pictures you can use in your text.
These pictures are, in fact, just normal characters and are also mapped by Unicode.
For example:

This is only two characters. The code points for these are very large numbers, but
each is still only a single code point. The computer considers these as no different
than any other two characters.

Note: The word “emoji” comes from Japanese, where “e” means picture and
“moji” means character.

Strings in Swift
Swift, like any good programming language, can work directly with characters and
strings. It does so through the data types Character and String, respectively. In this
section, you’ll learn about these data types and how to work with them.

Characters and strings
The Character data type can store a single character. For example:

let characterA: Character = "a"

Swift Apprentice Chapter 2: Types & Operations

raywenderlich.com 63

This stores the character a. It can hold any character — even an emoji:

let characterDog: Character = "! "

But this data type is designed to hold only single characters. The String data type,
on the other hand, stores multiple characters. For example:

let stringDog: String = "Dog"

It’s as simple as that! The right-hand side of this expression is what’s known as a
string literal; it’s the Swift syntax for representing a string.

Of course, type inference applies here as well. If you remove the type in the above
declaration, then Swift does the right thing and makes the stringDog a String
constant:

let stringDog = "Dog" // Inferred to be of type String

Note: There’s no such thing as a character literal in Swift. A character is
simply a string of length one. However, Swift infers the type of any string
literal to be String, so if you want a Character instead, you must make the
type explicit.

Concatenation
You can do much more than create simple strings. Sometimes you need to
manipulate a string, and one common way to do so is to combine it with another
string.

In Swift, you do this in a rather simple way: by using the addition operator. Just as
you can add numbers, you can add strings:

var message = "Hello" + " my name is "
let name = "Matt"
message += name // "Hello my name is Matt"

You need to declare message as a variable rather than a constant because you want
to modify it. You can add string literals together, as in the first line, and you can add
string variables or constants together, as in the last line.

Swift Apprentice Chapter 2: Types & Operations

raywenderlich.com 64

It’s also possible to add characters to a string. However, Swift’s strictness with types
means you have to be explicit when doing so, just as you have to be when you work
with numbers if one is an Int and the other is a Double.

To add a character to a string, you do this:

let exclamationMark: Character = "!"
message += String(exclamationMark) // "Hello my name is Matt!"

With this code, you explicitly convert the Character to a String before you add it to
message.

Interpolation
You can also build up a string by using interpolation, which is a special Swift syntax
that lets you build a string in a way that’s easy to read:

message = "Hello my name is \(name)!" // "Hello my name is
Matt!"

As I’m sure you’ll agree, this is much more readable than the example from the
previous section. It’s an extension of the string literal syntax, whereby you replace
certain parts of the string with other values. You enclose the value you want to insert
in parentheses preceded by a backslash.

This syntax works in the same way to build a string from other data types, such as
numbers:

let oneThird = 1.0 / 3.0
let oneThirdLongString = "One third is \(oneThird) as a
decimal."

Here, you use a Double in the interpolation. At the end of this code, your
oneThirdLongString constant will contain the following:

One third is 0.3333333333333333 as a decimal.

Of course, it would actually take infinite characters to represent one third as a
decimal, because it’s a repeating decimal. String interpolation with a Double gives
you no way to control the precision of the resulting string. This is an unfortunate
consequence of using string interpolation: It’s simple to use, but offers no ability to
customize the output.

Swift Apprentice Chapter 2: Types & Operations

raywenderlich.com 65

Multi-line strings
Swift has a neat way to express strings that contain multiple lines. This can be rather
useful when you need to put a very long string in your code.

You do it like so:

let bigString = """
 You can have a string
 that contains multiple
 lines
 by
 doing this.
 """
print(bigString)

The three double-quotes signify that this is a multi-line string. Handily, the first and
final new lines do not become part of the string. This makes it more flexible as you
don’t have to have the three double-quotes on the same line as the string.

In the case above, it will print the following:

You can have a string
that contains multiple
lines
by
doing this.

Notice that the two-space margin in the multiline string literal is stripped out of the
result. Swift looks at number of leading spaces on the final three double-quotes line.
Using this as a baseline, Swift requires that all lines above it have at least that much
space so it can remove it from each line. This lets you format your code with pretty
indentation without effecting the output.

Mini-exercises
1. Create a string constant called firstName and initialize it to your first name.

Also create a string constant called lastName and initialize it to your last name.

2. Create a string constant called fullName by adding the firstName and lastName
constants together, separated by a space.

3. Using interpolation, create a string constant called myDetails that uses the
fullName constant to create a string introducing yourself. For example, my string
would read: "Hello, my name is Matt Galloway.".

Swift Apprentice Chapter 2: Types & Operations

raywenderlich.com 66

Tuples
Sometimes data comes in pairs or triplets. An example of this is a pair of (x, y)
coordinates on a 2D grid. Similarly, a set of coordinates on a 3D grid is comprised of
an x-value, a y-value and a z-value. In Swift, you can represent such related data in a
very simple way through the use of a tuple.

A tuple is a type that represents data composed of more than one value of any type.
You can have as many values in your tuple as you like. For example, you can define a
pair of 2D coordinates where each axis value is an integer, like so:

let coordinates: (Int, Int) = (2, 3)

The type of coordinates is (Int, Int). The types of the values within the tuple, in
this case Int, are separated by commas and surrounded by parentheses. The code for
creating the tuple is much the same, with each value separated by commas and
surrounded by parentheses.

Type inference can infer tuple types too:

let coordinates = (2, 3)

You could similarly create a tuple of Double values, like so:

let coordinatesDoubles = (2.1, 3.5)
// Inferred to be of type (Double, Double)

Or you could mix and match the types comprising the tuple, like so:

let coordinatesMixed = (2.1, 3)
// Inferred to be of type (Double, Int)

And here’s how to access the data inside a tuple:

let x1 = coordinates.0
let y1 = coordinates.1

You can reference each item by its position in the tuple, starting with zero. So in this
example, x1 will equal 2 and y1 will equal 3.

Note: Starting with zero is a common practice in computer programming and
is called zero indexing. You’ll see this again in Chapter 7, “Arrays,
Dictionaries, Sets.”

Swift Apprentice Chapter 2: Types & Operations

raywenderlich.com 67

In the previous example, it may not be immediately obvious that the first value, at
index 0, is the x-coordinate and the second value, at index 1, is the y-coordinate. This
is another demonstration of why it’s important to always name your variables in a
way that avoids confusion.

Fortunately, Swift allows you to name the individual parts of a tuple, and you can be
explicit about what each part represents. For example:

let coordinatesNamed = (x: 2, y: 3)
// Inferred to be of type (x: Int, y: Int)

Here, the code annotates the values of coordinatesNamed to contain a label for each
part of the tuple.

Then, when you need to access each part of the tuple, you can access it by its name:

let x2 = coordinatesNamed.x
let y2 = coordinatesNamed.y

This is much clearer and easier to understand. More often than not, it’s helpful to
name the components of your tuples.

If you want to access multiple parts of the tuple at the same time, as in the examples
above, you can also use a shorthand syntax to make it easier:

let coordinates3D = (x: 2, y: 3, z: 1)
let (x3, y3, z3) = coordinates3D

This declares three new constants, x3, y3 and z3, and assigns each part of the tuple
to them in turn. The code is equivalent to the following:

let coordinates3D = (x: 2, y: 3, z: 1)
let x3 = coordinates3D.x
let y3 = coordinates3D.y
let z3 = coordinates3D.z

If you want to ignore a certain element of the tuple, you can replace the
corresponding part of the declaration with an underscore. For example, if you were
performing a 2D calculation and wanted to ignore the z-coordinate of
coordinates3D, then you’d write the following:

let (x4, y4, _) = coordinates3D

This line of code only declares x4 and y4. The _ is special and simply means you’re
ignoring this part for now.

Swift Apprentice Chapter 2: Types & Operations

raywenderlich.com 68

Note: You’ll find that you can use the underscore (also called the wildcard
operator) throughout Swift to ignore a value.

Mini-exercises
1. Declare a constant tuple that contains three Int values followed by a Double. Use

this to represent a date (month, day, year) followed by an average temperature for
that date.

2. Change the tuple to name the constituent components. Give them names related
to the data that they contain: month, day, year and averageTemperature.

3. In one line, read the day and average temperature values into two constants.
You’ll need to employ the underscore to ignore the month and year.

4. Up until now, you’ve only seen constant tuples. But you can create variable
tuples, too. Change the tuple you created in the exercises above to a variable by
using var instead of let. Now change the average temperature to a new value.

A whole lot of number types
You’ve been using Int to represent whole numbers. An Int is represented with 64
bits on most modern hardware and with 32 bits on older, or more resource-
constrained systems. Swift provides many more number types that use different
amounts of storage. For whole numbers, you can use the explicit signed types Int8,
Int16, Int32, Int64. These types consume 1, 2, 4, and 8 bytes of storage
respectively. Each of these types use 1 bit to represent the sign.

If you are only dealing with non-negative values there are a set of explicit unsigned
types that you can use. These include UInt8, UInt16, UInt32 and UInt64. While you
cannot represent negative values with these, the extra 1 bit lets you represent values
that are twice as big as their signed counterparts.

Here is a summary of the different integer types and their storage size in bytes. Most
of the time you will just want to use an Int.

These become useful if your code is interacting with another piece of software that
uses one of these more exact sizes or if you need to optimize for storage size.

Swift Apprentice Chapter 2: Types & Operations

raywenderlich.com 69

You’ve been using Double to represent fractional numbers. Swift offers a Float type
which has less range and precision than Double but requires half as much storage.
Modern hardware has been optimized for Double, so it should be your go-to unless
there is good reason to use a Float.

Most of the time you will just use Int and Double to represent numbers, but you
might encounter the other types every once in a while.

For example, suppose you need to add together an Int16 with a UInt8 and an Int32.
You can do that like so:

let a: Int16 = 12
let b: UInt8 = 255
let c: Int32 = -100000

let answer = Int(a) + Int(b) + Int(c) // answer is an Int

Type aliases
A useful feature of Swift is being able to create your own type which is actually an
alias of another type. What this means you can do is give a more useful name to your
type that describes what it is, but actually underneath it’s just another type. This is
known as a type alias.

It’s simple to create a type alias, like so:

typealias Animal = String

Swift Apprentice Chapter 2: Types & Operations

raywenderlich.com 70

This creates a new type called Animal. When the compiler sees this type it simply
treats it as a String. Therefore you could do something like this:

let myPet: Animal = "Dog"

This might not seem too useful right now, but sometimes types can become complex
and creating an alias for them can give them a simpler and more explicit name. For
example, you might do the following:

typealias Coordinates = (Int, Int)
let xy: Coordinates = (2, 4)

This creates a type called Coordinates which is a tuple containing two Ints and
then uses it.

As you see more and more Swift you’ll see how type aliases can be very powerful and
simplify code.

A peek behind the curtains: Protocols
Even though there are a dozen different numeric types, they are pretty easy to
understand and use, because they all roughly support the same operations. In other
words, once you know how to use an Int, using any one of the flavors is straight-
forward.

One of the truly great features of Swift is that it formalizes the idea of type
commonality using what are known as protocols. By learning a protocol, you
instantly understand how an entire family of types that use that protocol work.

In the case of integers, the functionality can be diagrammed like so:

Swift Apprentice Chapter 2: Types & Operations

raywenderlich.com 71

The arrows indicate conformance to (sometimes called adoption of) a protocol. While
this graph does not show all of the protocols that integer types conform to — it gives
you insight about how things are organized.

Swift is the first protocol-based language. As you begin to understand the protocols
that underly the types, you can leverage the system in ways not possible with other
languages.

By the end of this book, you’ll be hooking into existing protocols and even creating
new ones of your own.

Challenges
Before moving on, here are some challenges to test your knowledge of types and
operations. It is best if you try to solve them yourself, but solutions are available if
you get stuck. These came with the download or are available at the printed book’s
source code link listed in the introduction.

Challenge 1: Coordinates
Create a constant called coordinates and assign a tuple containing two and three to
it.

Challenge 2: Named coordinate
Create a constant called namedCoordinate with a row and column component.

Challenge 3: Which are valid?
Which of the following are valid statements?

let character: Character = "Dog"
let character: Character = "! "
let string: String = "Dog"
let string: String = "! "

Challenge 4. Does it compile?
let tuple = (day: 15, month: 8, year: 2015)
let day = tuple.Day

Swift Apprentice Chapter 2: Types & Operations

raywenderlich.com 72

Challenge 5: Find the error
What is wrong with the following code?

let name = "Matt"
name += " Galloway"

Challenge 6: What is the type of value?
What is the type of the constant named value?

let tuple = (100, 1.5, 10)
let value = tuple.1

Challenge 7: What is the value of month?
What is the value of the constant named month?

let tuple = (day: 15, month: 8, year: 2015)
let month = tuple.month

Challenge 8: What is the value of summary?
What is the value of the constant named summary?

let number = 10
let multiplier = 5
let summary = "\(number) multiplied by \(multiplier) equals \
(number * multiplier)"

Challenge 9: Compute the value
What is the sum of a and b, minus c?

let a = 4
let b: Int32 = 100
let c: UInt8 = 12

Challenge 10: Different precision !s

What is the numeric difference between Double.pi and Float.pi?

Swift Apprentice Chapter 2: Types & Operations

raywenderlich.com 73

Key points
• Type conversion allows you to convert values of one type into another.

• Type conversion is required when using an operator, such as the basic arithmetic
operators (+, -, *, /), with mixed types.

• Type inference allows you to omit the type when Swift already knows it.

• Unicode is the standard for mapping characters to numbers.

• A single mapping in Unicode is called a code point.

• The Character data type stores single characters. The String data type stores
collections of characters, or strings.

• You can combine strings by using the addition operator.

• You can use string interpolation to build a string in-place.

• You can use tuples to group data into a single data type.

• Tuples can either be unnamed or named. Their elements are accessed with index
numbers for unnamed tuples, or programmer given names for named tuples.

• There are many kinds of numeric types with different storage and precision
capabilities.

• Type aliases can be used to create a new type that is simply a new name for
another type.

• Protocols are how types are organized in Swift. They describe the common
operations that multiple types share.

Swift Apprentice Chapter 2: Types & Operations

raywenderlich.com 74

3Chapter 3: Basic Control
Flow
By Matt Galloway

When writing a computer program, you need to be able to tell the computer what to
do in different scenarios. For example, a calculator app would need to do one thing if
the user taps the addition button and another thing if the user taps the subtraction
button.

In computer-programming terms, this concept is known as control flow, named so
because the flow of the program is controlled by various methods. In this chapter,
you’ll learn how to make decisions and repeat tasks in your programs by using syntax
to control the flow. You’ll also learn about Booleans, which represent true and false
values, and how you can use these to compare data.

raywenderlich.com 75

Comparison operators
You’ve seen a few types now, such as Int, Double and String. Here you’ll learn
about another type, one that will let you compare values through the comparison
operators.

When you perform a comparison, such as looking for the greater of two numbers, the
answer is either true or false. Swift has a data type just for this! It’s called a Bool,
which is short for Boolean, after a rather clever man named George Boole who
invented an entire field of mathematics around the concept of true and false.

This is how you use a Boolean in Swift:

let yes: Bool = true
let no: Bool = false

And because of Swift’s type inference, you can leave off the type annotation:

let yes = true
let no = false

A Boolean can only be either true or false, denoted by the keywords true and false.
In the code above, you use the keywords to set the state of each constant.

Boolean operators
Booleans are commonly used to compare values. For example, you may have two
values and you want to know if they’re equal: either they are (true) or they aren’t
(false).

In Swift, you do this using the equality operator, which is denoted by ==:

let doesOneEqualTwo = (1 == 2)

Swift infers that doesOneEqualTwo is a Bool. Clearly, 1 does not equal 2, and
therefore doesOneEqualTwo will be false.

Similarly, you can find out if two values are not equal using the != operator:

let doesOneNotEqualTwo = (1 != 2)

This time, the comparison is true because 1 does not equal 2, so
doesOneNotEqualTwo will be true.

Swift Apprentice Chapter 3: Basic Control Flow

raywenderlich.com 76

The prefix ! operator, also called the not-operator, toggles true to false and false to
true. Another way to write the above is:

let alsoTrue = !(1 == 2)

Because 1 does not equal 2, (1 == 2) is false, and then ! flips it to true.

Two more operators let you determine if a value is greater than (>) or less than (<)
another value. You’ll likely know these from mathematics:

let isOneGreaterThanTwo = (1 > 2)
let isOneLessThanTwo = (1 < 2)

And it’s not rocket science to work out that isOneGreaterThanTwo will equal false
and isOneLessThanTwo will equal true.

There’s also an operator that lets you test if a value is less than or equal to another
value: <=. It’s a combination of < and ==, and will therefore return true if the first
value is either less than the second value or equal to it.

Similarly, there’s an operator that lets you test if a value is greater than or equal to
another — you may have guessed that it’s >=.

Boolean logic
Each of the examples above tests just one condition. When George Boole invented
the Boolean, he had much more planned for it than these humble beginnings. He
invented Boolean logic, which lets you combine multiple conditions to form a result.

One way to combine conditions is by using AND. When you AND together two
Booleans, the result is another Boolean. If both input Booleans are true, then the
result is true. Otherwise, the result is false.

Swift Apprentice Chapter 3: Basic Control Flow

raywenderlich.com 77

In Swift, the operator for Boolean AND is &&, used like so:

let and = true && true

In this case, and will be true. If either of the values on the right was false, then and
would be false.

Another way to combine conditions is by using OR. When you OR together two
Booleans, the result is true if either of the input Booleans is true. Only if both input
Booleans are false will the result be false.

In Swift, the operator for Boolean OR is ||, used like so:

let or = true || false

In this case, or will be true. If both values on the right were false, then or would be
false. If both were true, then or would still be true.

In Swift, Boolean logic is usually applied to multiple conditions. Maybe you want to
determine if two conditions are true; in that case, you’d use AND. If you only care
about whether one of two conditions is true, then you’d use OR.

For example, consider the following code:

let andTrue = 1 < 2 && 4 > 3
let andFalse = 1 < 2 && 3 > 4

let orTrue = 1 < 2 || 3 > 4
let orFalse = 1 == 2 || 3 == 4

Each of these tests two separate conditions, combining them with either AND or OR.

It’s also possible to use Boolean logic to combine more than two comparisons. For
example, you can form a complex comparison like so:

let andOr = (1 < 2 && 3 > 4) || 1 < 4

The parentheses disambiguates the expression. First Swift evaluates the sub-
expression inside the parentheses, and then it evaluates the full expression,
following these steps:

1. (1 < 2 && 3 > 4) || 1 < 4
2. (true && false) || true
3. false || true
4. true

Swift Apprentice Chapter 3: Basic Control Flow

raywenderlich.com 78

String equality
Sometimes you want to determine if two strings are equal. For example, a children’s
game of naming an animal in a photo would need to determine if the player
answered correctly.

In Swift, you can compare strings using the standard equality operator, ==, in exactly
the same way as you compare numbers. For example:

let guess = "dog"
let dogEqualsCat = guess == "cat"

Here, dogEqualsCat is a Boolean that in this case equals false, because "dog" does
not equal "cat". Simple!

Just as with numbers, you can compare not just for equality, but also to determine is
one value is greater than or less that another value. For example:

let order = "cat" < "dog"

This syntax checks if one string comes before another alphabetically. In this case,
order equals true because "cat" comes before "dog".

Note: You will learn more about string equality in Chapter 9, “Strings”. There
are some interesting things that crop up when strings contain special
characters.

Toggling a Bool
A Bool is often used to represent the state of something being “on” or “off”. In those
cases, it’s common for the state to be toggled between states. For example, you could
use a Bool to represent the state of a light switch in your application and toggle
between the states “on” and “off”.

For these situations, there is a handy way to flip a Bool from true to false and back
again. Like so:

var switchState = true
switchState.toggle() // switchState = false
switchState.toggle() // switchState = true

Swift Apprentice Chapter 3: Basic Control Flow

raywenderlich.com 79

Here, the variable called switchState starts as true. Then, after one toggle, it
becomes false. After another toggle it’s set to true again.

Note: The toggle() here is a call to a function. You’ll see more about these in
Chapter 5, “Functions”, and how they apply to types in Chapter 12, “Methods”.

Mini-exercises
1. Create a constant called myAge and set it to your age. Then, create a constant

named isTeenager that uses Boolean logic to determine if the age denotes
someone in the age range of 13 to 19.

2. Create another constant named theirAge and set it to my age, which is 30. Then,
create a constant named bothTeenagers that uses Boolean logic to determine if
both you and I are teenagers.

3. Create a constant named reader and set it to your name as a string. Create a
constant named author and set it to my name, Matt Galloway. Create a constant
named authorIsReader that uses string equality to determine if reader and
author are equal.

4. Create a constant named readerBeforeAuthor which uses string comparison to
determine if reader comes before author.

The if statement
The first and most common way of controlling the flow of a program is through the
use of an if statement, which allows the program to do something only if a certain
condition is true. For example, consider the following:

if 2 > 1 {
 print("Yes, 2 is greater than 1.")
}

This is a simple if statement. If the condition is true, then the statement will
execute the code between the braces. If the condition is false, then the statement
won’t execute the code between the braces. It’s as simple as that!

Swift Apprentice Chapter 3: Basic Control Flow

raywenderlich.com 80

You can extend an if statement to provide code to run in case the condition turns
out to be false. This is known as the else clause. Here’s an example:

let animal = "Fox"

if animal == "Cat" || animal == "Dog" {
 print("Animal is a house pet.")
} else {
 print("Animal is not a house pet.")
}

Here, if animal equals either "Cat" or "Dog", then the statement will run the first
block of code. If animal does not equal either "Cat" or "Dog", then the statement
will run the block inside the else part of the if statement, printing the following to
the debug area:

Animal is not a house pet.

But you can go even further than that with if statements. Sometimes you want to
check one condition, then another. This is where else-if comes into play, nesting
another if statement in the else clause of a previous if statement.

You can use it like so:

let hourOfDay = 12
var timeOfDay = ""

if hourOfDay < 6 {
 timeOfDay = "Early morning"
} else if hourOfDay < 12 {
 timeOfDay = "Morning"
} else if hourOfDay < 17 {
 timeOfDay = "Afternoon"
} else if hourOfDay < 20 {
 timeOfDay = "Evening"
} else if hourOfDay < 24 {
 timeOfDay = "Late evening"
} else {
 timeOfDay = "INVALID HOUR!"
}
print(timeOfDay)

These nested if statements test multiple conditions one by one until a true
condition is found. Only the code associated with that first true condition is
executed, regardless of whether subsequent else-if conditions are true. In other
words, the order of your conditions matters!

Swift Apprentice Chapter 3: Basic Control Flow

raywenderlich.com 81

You can add an else clause at the end to handle the case where none of the
conditions are true. This else clause is optional if you don’t need it; in this example
you do need it, to ensure that timeOfDay has a valid value by the time you print it
out.

In this example, the if statement takes a number representing an hour of the day
and converts it to a string representing the part of the day to which the hour belongs.
Working with a 24-hour clock, the statements are checked in order, one at a time:

• The first check is to see if the hour is less than 6. If so, that means it’s early
morning.

• If the hour is not less than 6, the statement continues to the first else-if, where
it checks the hour to see if it’s less than 12.

• Then in turn, as conditions prove false, the statement checks the hour to see if it’s
less than 17, then less than 20, then less than 24.

• Finally, if the hour is out of range, the statement prints that information to the
console.

In the code above, the hourOfDay constant is 12. Therefore, the code will print the
following:

Afternoon

Notice that even though both the hourOfDay < 20 and hourOfDay < 24 conditions
are also true, the statement only executes the first block whose condition is true; in
this case, the block with the hourOfDay < 17 condition.

Short circuiting
An important fact about if statements is what happens when there are multiple
Boolean conditions separated by ANDs (&&) or ORs (||).

Consider the following code:

if 1 > 2 && name == "Matt Galloway" {
 // ...
}

The first condition of the if statement, 1 > 2 is false. Therefore the whole
expression cannot ever be true.

Swift Apprentice Chapter 3: Basic Control Flow

raywenderlich.com 82

So Swift will not even bother to check the second part of the expression, namely the
check of name. Similarly, consider the following code:

if 1 < 2 || name == "Matt Galloway" {
 // ...
}

Since 1 < 2 is true, the whole expression must be true as well. Therefore once
again, the check of name is not executed. This will come in handy later on when you
start dealing with more complex data types.

Encapsulating variables
if statements introduce a new concept scope, which is a way to encapsulate
variables through the use of braces. Imagine you want to calculate the fee to charge
your client. Here’s the deal you’ve made:

You earn $25 for every hour up to 40 hours, and $50 for every hour thereafter.

Using Swift, you can calculate your fee in this way:

var hoursWorked = 45

var price = 0
if hoursWorked > 40 {
 let hoursOver40 = hoursWorked - 40
 price += hoursOver40 * 50
 hoursWorked -= hoursOver40
}
price += hoursWorked * 25

print(price)

This code takes the number of hours and checks if it’s over 40. If so, the code
calculates the number of hours over 40 and multiplies that by $50, then adds the
result to the price. The code then subtracts the number of hours over 40 from the
hours worked. It multiplies the remaining hours worked by $25 and adds that to the
total price.

In the example above, the result is as follows:

1250

Swift Apprentice Chapter 3: Basic Control Flow

raywenderlich.com 83

The interesting thing here is the code inside the if statement. There is a declaration
of a new constant, hoursOver40, to store the number of hours over 40. Clearly, you
can use it inside the if statement. But what happens if you try to use it at the end of
the above code?

...

print(price)
print(hoursOver40)

This would result in the following error:

Use of unresolved identifier 'hoursOver40'

This error informs you that you’re only allowed to use the hoursOver40 constant
within the scope in which it was created. In this case, the if statement introduced a
new scope, so when that scope is finished, you can no longer use the constant.

However, each scope can use variables and constants from its parent scope. In the
example above, the scope inside of the if statement uses the price and
hoursWorked variables, which you created in the parent scope.

The ternary conditional operator
Now I want to introduce a new operator, one you didn’t see in Chapter 2, “Types &
Operations”. It’s called the ternary conditional operator and it’s related to if
statements.

If you wanted to determine the minimum and maximum of two variables, you could
use if statements, like so:

let a = 5
let b = 10

let min: Int
if a < b {
 min = a
} else {
 min = b
}

let max: Int
if a > b {
 max = a

Swift Apprentice Chapter 3: Basic Control Flow

raywenderlich.com 84

} else {
 max = b
}

By now you know how this works, but it’s a lot of code. Wouldn’t it be nice if you
could shrink this to just a couple of lines? Well, you can, thanks to the ternary
conditional operator!

The ternary conditional operator takes a condition and returns one of two values,
depending on whether the condition was true or false. The syntax is as follows:

(<CONDITION>) ? <TRUE VALUE> : <FALSE VALUE>

You can use this operator to rewrite your long code block above, like so:

let a = 5
let b = 10

let min = a < b ? a : b
let max = a > b ? a : b

In the first example, the condition is a < b. If this is true, the result assigned back to
min will be the value of a; if it’s false, the result will be the value of b.

I’m sure you’ll agree that’s much simpler! This is a useful operator that you’ll find
yourself using regularly.

Note: Because finding the greater or smaller of two numbers is such a
common operation, the Swift standard library provides two functions for this
purpose: max and min. If you were paying attention earlier in the book, then
you’ll recall you’ve already seen these.

Mini-exercises
1. Create a constant named myAge and initialize it with your age. Write an if

statement to print out Teenager if your age is between 13 and 19, and Not a
teenager if your age is not between 13 and 19.

2. Create a constant named answer and use a ternary condition to set it equal to the
result you print out for the same cases in the above exercise. Then print out
answer.

Swift Apprentice Chapter 3: Basic Control Flow

raywenderlich.com 85

Loops
Loops are Swift’s way of executing code multiple times. In this section, you’ll learn
about one type of loop: the while loop. If you know another programming language,
you’ll find the concepts and maybe even the syntax to be familiar.

While loops
A while loop repeats a block of code while a condition is true. You create a while
loop this way:

while <CONDITION> {
 <LOOP CODE>
}

The loop checks the condition for every iteration. If the condition is true, then the
loop executes and moves on to another iteration. If the condition is false, then the
loop stops. Just like if statements, while loops introduce a scope.

The simplest while loop takes this form:

while true { }

This is a while loop that never ends because the condition is always true. Of course,
you would never write such a while loop, because your program would spin forever!
This situation is known as an infinite loop, and while it might not cause your
program to crash, it will very likely cause your computer to freeze.

Here’s a more useful example of a while loop:

var sum = 1

while sum < 1000 {
 sum = sum + (sum + 1)
}

This code calculates a mathematical sequence, up to the point where the value is
greater than 1000.

The loop executes as follows:

• Before iteration 1: sum = 1, loop condition = true

• After iteration 1: sum = 3, loop condition = true

Swift Apprentice Chapter 3: Basic Control Flow

raywenderlich.com 86

• After iteration 2: sum = 7, loop condition = true

• After iteration 3: sum = 15, loop condition = true

• After iteration 4: sum = 31, loop condition = true

• After iteration 5: sum = 63, loop condition = true

• After iteration 6: sum = 127, loop condition = true

• After iteration 7: sum = 255, loop condition = true

• After iteration 8: sum = 511, loop condition = true

• After iteration 9: sum = 1023, loop condition = false

After the ninth iteration, the sum variable is 1023, and therefore the loop condition
of sum < 1000 becomes false. At this point, the loop stops.

Repeat-while loops
A variant of the while loop is called the repeat-while loop. It differs from the while
loop in that the condition is evaluated at the end of the loop rather than at the
beginning. You construct a repeat-while loop like this:

repeat {
 <LOOP CODE>
} while <CONDITION>

Here’s the example from the last section, but using a repeat-while loop:

sum = 1

repeat {
 sum = sum + (sum + 1)
} while sum < 1000

In this example, the outcome is the same as before. However, that isn’t always the
case — you might get a different result with a different condition.

Consider the following while loop:

sum = 1

while sum < 1 {
 sum = sum + (sum + 1)
}

Swift Apprentice Chapter 3: Basic Control Flow

raywenderlich.com 87

Consider the corresponding repeat-while loop, which uses the same condition:

sum = 1

repeat {
 sum = sum + (sum + 1)
} while sum < 1

In the case of the regular while loop, the condition sum < 1 is false right from the
start. That means the body of the loop won’t be reached! The value of sum will equal
1 because the loop won’t execute any iterations.

In the case of the repeat-while loop, sum will equal 3 because the loop executes
once.

Breaking out of a loop
Sometimes you want to break out of a loop early. You can do this using the break
statement, which immediately stops the execution of the loop and continues on to
the code after the loop.

For example, consider the following code:

sum = 1

while true {
 sum = sum + (sum + 1)
 if sum >= 1000 {
 break
 }
}

Here, the loop condition is true, so the loop would normally iterate forever.
However, the break means the while loop will exit once the sum is greater than or
equal to 1000.

You’ve seen how to write the same loop in different ways, demonstrating that in
computer programming, there are often many ways to achieve the same result.

You should choose the method that’s easiest to read and conveys your intent in the
best way possible. This is an approach you’ll internalize with enough time and
practice.

Swift Apprentice Chapter 3: Basic Control Flow

raywenderlich.com 88

Mini-exercises
1. Create a variable named counter and set it equal to 0. Create a while loop with

the condition counter < 10 which prints out counter is X (where X is replaced
with counter value) and then increments counter by 1.

2. Create a variable named counter and set it equal to 0. Create another variable
named roll and set it equal to 0. Create a repeat-while loop. Inside the loop,
set roll equal to Int.random(in: 0...5) which means to pick a random
number between 0 and 5. Then increment counter by 1. Finally, print After X
rolls, roll is Y where X is the value of counter and Y is the value of roll.
Set the loop condition such that the loop finishes when the first 0 is rolled.

Challenges
Before moving on, here are some challenges to test your knowledge of basic control
flow. It is best if you try to solve them yourself, but solutions are available if you get
stuck. These came with the download or are available at the printed book’s source
code link listed in the introduction.

Challenge 1: Find the error
What’s wrong with the following code?

let firstName = "Matt"

if firstName == "Matt" {
 let lastName = "Galloway"
} else if firstName == "Ray" {
 let lastName = "Wenderlich"
}
let fullName = firstName + " " + lastName

Challenge 2: Boolean challenge
In each of the following statements, what is the value of the Boolean answer
constant?

let answer = true && true
let answer = false || false
let answer = (true && 1 != 2) || (4 > 3 && 100 < 1)
let answer = ((10 / 2) > 3) && ((10 % 2) == 0)

Swift Apprentice Chapter 3: Basic Control Flow

raywenderlich.com 89

Challenge 3: Snakes and ladders
Imagine you’re playing a game of snakes & ladders that goes from position 1 to
position 20. On it, there are ladders at position 3 and 7 which take you to 15 and 12
respectively. Then there are snakes at positions 11 and 17 which take you to 2 and 9
respectively.

Create a constant called currentPosition which you can set to whatever position
between 1 and 20 which you like. Then create a constant called diceRoll which you
can set to whatever roll of the dice you want. Finally, calculate the final position
taking into account the ladders and snakes, calling it nextPosition.

Challenge 4: Number of days in a month
Given a month (represented with a String in all lowercase) and the current year
(represented with an Int), calculate the number of days in the month. Remember
that because of leap years, "february" has 29 days when the year is a multiple of 4 but
not a multiple of 100. February also has 29 days when the year is a multiple of 400.

Challenge 5: Next power of two
Given a number, determine the next power of two above or equal to that number.

Challenge 6: Triangular number
Given a number, print the triangular number of that depth. You can get a refresher of
triangular numbers here: https://en.wikipedia.org/wiki/Triangular_number

Challenge 7: Fibonacci
Calculate the n’th Fibonacci number. Remember that Fibonacci numbers start its
sequence with 1 and 1, and then subsequent numbers in the sequence are equal to
the previous two values added together. You can get a refresher here: https://
en.wikipedia.org/wiki/Fibonacci_number

Challenge 8: Make a loop
Use a loop to print out the times table up to 12 of a given factor.

Swift Apprentice Chapter 3: Basic Control Flow

raywenderlich.com 90

Challenge 9: Dice roll table
Print a table showing the number of combinations to create each number from 2 to
12 given 2 six-sided dice rolls. You should not use a formula but rather compute the
number of combinations exhaustively by considering each possible dice roll.

Key points
• You use the Boolean data type Bool to represent true and false.

• The comparison operators, all of which return a Boolean, are:

• You can use Boolean logic (&& and ||) to combine comparison conditions.

• You use if statements to make simple decisions based on a condition.

• You use else and else-if within an if statement to extend the decision-making
beyond a single condition.

• Short circuiting ensures that only the minimal required parts of a Boolean
expression are evaluated.

• You can use the ternary operator (a ? b : c) in place of simple if statements.

• Variables and constants belong to a certain scope, beyond which you cannot use
them. A scope inherits visible variables and constants from its parent.

• while loops allow you to perform a certain task a number of times until a
condition is met.

• repeat loops always execute the loop at least once.

• The break statement lets you break out of a loop.

Swift Apprentice Chapter 3: Basic Control Flow

raywenderlich.com 91

4Chapter 4: Advanced
Control Flow
By Matt Galloway

In the previous chapter, you learned how to control the flow of execution using the
decision-making powers of if statements and the while loop. In this chapter, you’ll
continue to learn how to control the flow of execution. You’ll learn about another
loop known as the for loop.

Loops may not sound very interesting, but they’re very common in computer
programs. For example, you might have code to download an image from the cloud;
with a loop, you could run that multiple times to download your entire photo library.
Or if you have a game with multiple computer-controlled characters, you might need
a loop to go through each one and make sure it knows what to do next.

You’ll also learn about switch statements, which are particularly powerful in Swift.
They let you inspect a value and decide what to do based on that value. They’re
incredibly powerful when used with some advanced Swift features such as pattern
matching.

raywenderlich.com 92

Countable ranges
Before you dive into the for loop statement, you need to know about the Countable
Range data types, which let you represent a sequence of countable integers. Let’s
look at two types of ranges.

First, there’s countable closed range, which you represent like so:

let closedRange = 0...5

The three dots (...) indicate that this range is closed, which means the range goes
from 0 to 5 inclusive. That’s the numbers (0, 1, 2, 3, 4, 5).

Second, there’s countable half-open range, which you represent like so:

let halfOpenRange = 0..<5

Here, you replace the three dots with two dots and a less-than sign (..<). Half-open
means the range goes from 0 up to, but not including, 5. That’s the numbers (0, 1,
2, 3, 4).

Both open and half-open ranges must always be increasing. In other words, the
second number must always be greater than or equal to the first. Countable ranges
are commonly used in both for loops and switch statements, which means that
throughout the rest of the chapter, you’ll use ranges as well!

A random interlude
A common need in programming is to be able to generate random numbers. And
Swift provides the functionality built in to the language, which is pretty handy!

As an example, imagine an application that needs to simulate rolling a die. You may
want to do something until a six is rolled. Now that you know about while loops, you
can do that with the random feature. You could do that like so:

while Int.random(in: 1...6) != 6 {
 print("Not a six")
}

Note: The random(in:) here is a call to a function. You’ll see more about
these in Chapter 5, “Functions”, and how they apply to types in Chapter 12,
“Methods”.

Swift Apprentice Chapter 4: Advanced Control Flow

raywenderlich.com 93

For loops
In the previous chapter you looked at while loops. Now that you know about ranges,
it’s time to look at another type of loop: the for loop. This is probably the most
common loop you’ll see, and you’ll use it to run code a certain number of times.

You construct a for loop like this:

for <CONSTANT> in <COUNTABLE RANGE> {
 <LOOP CODE>
}

The loop begins with the for keyword, followed by a name given to the loop constant
(more on that shortly), followed by in, followed by the range to loop through. Here’s
an example:

let count = 10
var sum = 0
for i in 1...count {
 sum += i
}

In the code above, the for loop iterates through the range 1 to count. At the first
iteration, i will equal the first element in the range: 1. Each time around the loop, i
will increment until it’s equal to count; the loop will execute one final time and then
finish.

Note: If you’d used a half-open range, the the last iteration would see i equal
to count - 1.

Inside the loop, you add i to the sum variable; it runs 10 times to calculate the
sequence 1 + 2 + 3 + 4 + 5 + ... all the way up to 10.

Here are the values of the constant i and variable sum for each iteration:

• Start of iteration 1: i = 1, sum = 0

• Start of iteration 2: i = 2, sum = 1

• Start of iteration 3: i = 3, sum = 3

• Start of iteration 4: i = 4, sum = 6

• Start of iteration 5: i = 5, sum = 10

Swift Apprentice Chapter 4: Advanced Control Flow

raywenderlich.com 94

• Start of iteration 6: i = 6, sum = 15

• Start of iteration 7: i = 7, sum = 21

• Start of iteration 8: i = 8, sum = 28

• Start of iteration 9: i = 9, sum = 36

• Start of iteration 10: i = 10, sum = 45

• After iteration 10: sum = 55

In terms of scope, the i constant is only visible inside the scope of the for loop,
which means it’s not available outside of the loop.

Note: If you’re mathematically astute, you might notice that this example
computes triangle numbers. Here’s a quick explanation: http://bbc.in/
1O89TGP

Xcode’s playground gives you a handy way to visualize such an iteration. Hover over
the sum += i line in the results pane, and you’ll see a white dot on the right. Hover
over that dot to reveal a plus (+) button:

Swift Apprentice Chapter 4: Advanced Control Flow

raywenderlich.com 95

Click this plus (+) button and Xcode will display a graph underneath the line within
the playground code editor:

This graph lets you visualize the sum variable as the loop iterates.

Finally, sometimes you only want to loop a certain number of times, so you don’t
need to use the loop constant at all.

In that case, you can employ the underscore to indicate you’re ignoring it, like so:

sum = 1
var lastSum = 0

for _ in 0..<count {
 let temp = sum
 sum = sum + lastSum
 lastSum = temp
}

This code doesn’t require a loop constant; the loop simply needs to run a certain
number of times. In this case, the range is 0 up to, but not including, count and is
half-open. This is the usual way of writing loops that run a certain number of times.
It’s also possible to only perform the iteration under certain conditions. For example,
imagine you wanted to compute a sum similar to that of triangle numbers, but only
for odd numbers:

sum = 0
for i in 1...count where i % 2 == 1 {
 sum += i
}

Swift Apprentice Chapter 4: Advanced Control Flow

raywenderlich.com 96

The previous loop has a where clause in the for loop statement. The loop still runs
through all values in the range 1 to count, but it will only execute the loop’s code
block when the where condition is true; in this case, where i is odd.

Continue and labeled statements
Sometimes you’d like to skip a loop iteration for a particular case without breaking
out of the loop entirely. You can do this with the continue statement, which
immediately ends the current iteration of the loop and starts the next iteration.

Note: In many cases, you can use the simpler where clause you just learned
about. The continue statement gives you a higher level of control, letting you
decide where and when you want to skip an iteration.

Take the example of an 8 by 8 grid, where each cell holds a value of the row
multiplied by the column. It looks much line a multiplication table, doesn’t it?

Let’s say you wanted to calculate the sum of all cells but exclude all even rows, as
shown below:

Swift Apprentice Chapter 4: Advanced Control Flow

raywenderlich.com 97

Using a for loop, you can achieve this as follows:

sum = 0

for row in 0..<8 {
 if row % 2 == 0 {
 continue
 }

 for column in 0..<8 {
 sum += row * column
 }
}

When the row modulo 2 equals 0, the row is even. In this case, continue makes the
for loop skip to the next row. Just like break, continue works with both for loops
and while loops.

The second code example will calculate the sum of all cells, excluding those where
the column is greater than or equal to the row.

To illustrate, it should sum the following cells:

Using a for loop, you can achieve this as follows:

sum = 0

rowLoop: for row in 0..<8 {
 columnLoop: for column in 0..<8 {
 if row == column {
 continue rowLoop
 }
 sum += row * column
 }
}

Swift Apprentice Chapter 4: Advanced Control Flow

raywenderlich.com 98

The previous code block makes use of labeled statements, labeling the two loops as
rowLoop and the columnLoop, respectively. When the row equals the column inside
the inner columnLoop, the outer rowLoop will continue.

You can use labeled statements like these with break to break out of a certain loop.
Normally, break and continue work on the innermost loop, so you need to use
labeled statements if you want to manipulate an outer loop.

Mini-exercises
1. Create a constant named range, and set it equal to a range starting at 1 and

ending with 10 inclusive. Write a for loop that iterates over this range and prints
the square of each number.

2. Write a for loop to iterate over the same range as in the exercise above and print
the square root of each number. You’ll need to type convert your loop constant.

3. Above, you saw a for loop that iterated over only the even rows like so:

sum = 0
for row in 0..<8 {
 if row % 2 == 0 {
 continue
 }
 for column in 0..<8 {
 sum += row * column
 }
}

Change this to use a where clause on the first for loop to skip even rows instead of
using continue. Check that the sum is 448 as in the initial example.

Switch statements
You can also control flow via the switch statement. It executes different code
depending on the value of a variable or constant. Here’s a switch statement that acts
on an integer:

let number = 10

switch number {
case 0:
 print("Zero")
default:

Swift Apprentice Chapter 4: Advanced Control Flow

raywenderlich.com 99

 print("Non-zero")
}

In this example, the code will print the following:

Non-zero

The purpose of this switch statement is to determine whether or not a number is
zero. It will get more complex — I promise!

To handle a specific case, you use case followed by the value you want to check for,
which in this case is 0. Then, you use default to signify what should happen for all
other values.

Here’s another example:

switch number {
case 10:
 print("It’s ten!")
default:
 break
}

This time you check for 10, in which case, you print a message. Nothing should
happen for other values. When you want nothing to happen for a case, you use the
break statement. This tells Swift that you meant to not write any code here and that
nothing should happen. Cases can never be empty, so you must write some code, even
if it’s just a break!

Of course, switch statements also work with data types other than integers. They
work with any data type!

Here’s an example of switching on a string:

let string = "Dog"

switch string {
case "Cat", "Dog":
 print("Animal is a house pet.")
default:
 print("Animal is not a house pet.")
}

Swift Apprentice Chapter 4: Advanced Control Flow

raywenderlich.com 100

This will print the following:

Animal is a house pet.

In this example, you provide two values for the case, meaning that if the value is
equal to either "Cat" or "Dog", then the statement will execute the case.

Advanced switch statements
You can also give your switch statements more than one case. In the previous
chapter, you saw an if statement that used multiple else clauses to convert an hour
of the day to a string describing that part of the day. You could rewrite that more
succinctly with a switch statement, like so:

let hourOfDay = 12
var timeOfDay = ""

switch hourOfDay {
case 0, 1, 2, 3, 4, 5:
 timeOfDay = "Early morning"
case 6, 7, 8, 9, 10, 11:
 timeOfDay = "Morning"
case 12, 13, 14, 15, 16:
 timeOfDay = "Afternoon"
case 17, 18, 19:
 timeOfDay = "Evening"
case 20, 21, 22, 23:
 timeOfDay = "Late evening"
default:
 timeOfDay = "INVALID HOUR!"
}

print(timeOfDay)

This code will print the following:

Afternoon

Remember ranges? Well, you can use ranges to simplify this switch statement. You
can rewrite the above code using ranges:

switch hourOfDay {
case 0...5:

Swift Apprentice Chapter 4: Advanced Control Flow

raywenderlich.com 101

 timeOfDay = "Early morning"
case 6...11:
 timeOfDay = "Morning"
case 12...16:
 timeOfDay = "Afternoon"
case 17...19:
 timeOfDay = "Evening"
case 20..<24:
 timeOfDay = "Late evening"
default:
 timeOfDay = "INVALID HOUR!"
}

This is more succinct than writing out each value individually for all cases.

When there are multiple cases, the statement will execute the first one that matches.
You’ll probably agree that this is more succinct and clear than using an if statement
for this example.

It’s slightly more precise as well, because the if statement method didn’t address
negative numbers, which here are correctly deemed to be invalid.

It’s also possible to match a case to a condition based on a property of the value. As
you learned in Chapter 2, “Types & Operations” you can use the modulo operator to
determine if an integer is even or odd.

Consider this code:

switch number {
case let x where x % 2 == 0:
 print("Even")
default:
 print("Odd")
}

This will print the following:

Even

This switch statement uses the let-where syntax, meaning the case will match only
when a certain condition is true. The let part binds a value to a name, while the
where part provides a Boolean condition that must be true for the case to match.

In this example, you’ve designed the case to match if the value is even — that is, if
the value modulo 2 equals 0.

Swift Apprentice Chapter 4: Advanced Control Flow

raywenderlich.com 102

The method by which you can match values based on conditions is known as pattern
matching.

In the previous example, the binding introduced an unnecessary constant x; it’s
simply another name for number.

You are allowed to use number in the where clause, and replace the binding with an
underscore to ignore it.

switch number {
case _ where number % 2 == 0:
 print("Even")
default:
 print("Odd")
}

Partial matching
Another way you can use switch statements with matching to great effect is as
follows:

let coordinates = (x: 3, y: 2, z: 5)

switch coordinates {
case (0, 0, 0): // 1
 print("Origin")
case (_, 0, 0): // 2
 print("On the x-axis.")
case (0, _, 0): // 3
 print("On the y-axis.")
case (0, 0, _): // 4
 print("On the z-axis.")
default: // 5
 print("Somewhere in space")
}

This switch statement makes use of partial matching. Here’s what each case does,
in order:

1. Matches precisely the case where the value is (0, 0, 0). This is the origin of 3D
space.

2. Matches y=0, z=0 and any value of x. This means the coordinate is on the x-axis.

3. Matches x=0, z=0 and any value of y. This means the coordinate is on the y-axis.

Swift Apprentice Chapter 4: Advanced Control Flow

raywenderlich.com 103

4. Matches x=0, y=0 and any value of z. This means the coordinate is on the z-axis.

5. Matches the remainder of coordinates.

You’re using the underscore to mean that you don’t care about the value. If you don’t
want to ignore the value, then you can bind it and use it in your switch statement.

Here’s an example of how to do this:

switch coordinates {
case (0, 0, 0):
 print("Origin")
case (let x, 0, 0):
 print("On the x-axis at x = \(x)")
case (0, let y, 0):
 print("On the y-axis at y = \(y)")
case (0, 0, let z):
 print("On the z-axis at z = \(z)")
case let (x, y, z):
 print("Somewhere in space at x = \(x), y = \(y), z = \(z)")
}

Here, the axis cases use the let syntax to pull out the pertinent values. The code
then prints the values using string interpolation to build the string.

Notice how you don’t need a default in this switch statement. This is because the
final case is essentially the default; it matches anything, because there are no
constraints on any part of the tuple. If the switch statement exhausts all possible
values with its cases, then no default is necessary.

Also notice how you could use a single let to bind all values of the tuple: let (x,
y, z) is the same as (let x, let y, let z).

Finally, you can use the same let-where syntax you saw earlier to match more
complex cases. For example:

switch coordinates {
case let (x, y, _) where y == x:
 print("Along the y = x line.")
case let (x, y, _) where y == x * x:
 print("Along the y = x^2 line.")
default:
 break
}

Here, you match the “y equals x” and “y equals x squared” lines.

And those are the basics of switch statements!

Swift Apprentice Chapter 4: Advanced Control Flow

raywenderlich.com 104

Mini-exercises
1. Write a switch statement that takes an age as an integer and prints out the life

stage related to that age. You can make up the life stages, or use my
categorization as follows: 0-2 years, Infant; 3-12 years, Child; 13-19 years,
Teenager; 20-39, Adult; 40-60, Middle aged; 61+, Elderly.

2. Write a switch statement that takes a tuple containing a string and an integer.
The string is a name, and the integer is an age. Use the same cases that you used
in the previous exercise and let syntax to print out the name followed by the life
stage. For example, for myself it would print out "Matt is an adult.".

Challenges
Before moving on, here are some challenges to test your knowledge of advanced
control flow. It is best if you try to solve them yourself, but solutions are available if
you get stuck. These came with the download or are available at the printed book’s
source code link listed in the introduction.

Challenge 1: How many times
In the following for loop, what will be the value of sum, and how many iterations will
happen?

var sum = 0
for i in 0...5 {
 sum += i
}

Challenge 2: Count the letter
In the while loop below, how many instances of “a” will there be in aLotOfAs? Hint:
aLotOfAs.count tells you how many characters are in the string aLotOfAs.

var aLotOfAs = ""
while aLotOfAs.count < 10 {
 aLotOfAs += "a"
}

Swift Apprentice Chapter 4: Advanced Control Flow

raywenderlich.com 105

Challenge 3: What will print
Consider the following switch statement:

switch coordinates {
case let (x, y, z) where x == y && y == z:
 print("x = y = z")
case (_, _, 0):
 print("On the x/y plane")
case (_, 0, _):
 print("On the x/z plane")
case (0, _, _):
 print("On the y/z plane")
default:
 print("Nothing special")
}

What will this code print when coordinates is each of the following?

let coordinates = (1, 5, 0)
let coordinates = (2, 2, 2)
let coordinates = (3, 0, 1)
let coordinates = (3, 2, 5)
let coordinates = (0, 2, 4)

Challenge 4: Closed range size
A closed range can never be empty. Why?

Challenge 5: The final countdown
Print a countdown from 10 to 0. (Note: do not use the reversed() method, which
will be introduced later.)

Challenge 6: Print a sequence
Print 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. (Note: do not use the
stride(from:by:to:) function, which will be introduced later.)

Swift Apprentice Chapter 4: Advanced Control Flow

raywenderlich.com 106

Key points
• You can use countable ranges to create a sequence of integers, incrementing to

move from one value to another.

• Closed ranges include both the start and end values.

• Half-open ranges include the start value and stop one before the end value.

• For loops allow you to iterate over a range.

• The continue statement lets you finish the current iteration of a loop and begin
the next iteration.

• Labeled statements let you use break and continue on an outer loop.

• You use switch statements to decide which code to run depending on the value of
a variable or constant.

• The power of a switch statement comes from leveraging pattern matching to
compare values using complex rules.

Swift Apprentice Chapter 4: Advanced Control Flow

raywenderlich.com 107

5Chapter 5: Functions

By Matt Galloway

Functions are a core part of many programming languages. Simply put, a function
lets you define a block of code that performs a task. Then, whenever your app needs
to execute that task, you can run the function instead of having to copy and paste the
same code everywhere.

In this chapter, you’ll learn how to write your own functions, and see firsthand how
Swift makes them easy to use.

raywenderlich.com 108

Function basics
Imagine you have an app that frequently needs to print your name. You can write a
function to do this:

func printMyName() {
 print("My name is Matt Galloway.")
}

The code above is known as a function declaration. You define a function using the
func keyword. After that comes the name of the function, followed by parentheses.
You’ll learn more about the need for these parentheses in the next section.

After the parentheses comes an opening brace, followed by the code you want to run
in the function, followed by a closing brace. With your function defined, you can use
it like so:

printMyName()

This prints out the following:

My name is Matt Galloway.

If you suspect that you’ve already used a function in previous chapters, you’re
correct! print, which prints the text you give it to the console, is indeed a function.
This leads nicely into the next section, in which you’ll learn how to pass data to a
function and get data back in return.

Function parameters
In the previous example, the function simply prints out a message. That’s great, but
sometimes you want to parameterize your function, which lets the function perform
differently depending on the data passed into it via its parameters.

As an example, consider the following function:

func printMultipleOfFive(value: Int) {
 print("\(value) * 5 = \(value * 5)")
}
printMultipleOfFive(value: 10)

Swift Apprentice Chapter 5: Functions

raywenderlich.com 109

Here, you can see the definition of one parameter inside the parentheses after the
function name, named value and of type Int. In any function, the parentheses
contain what’s known as the parameter list. These parentheses are required both
when declaring and when invoking the function, even if the parameter list is empty.
This function will print out any given multiple of five. In the example, you call the
function with an argument of 10, so the function prints the following:

10 * 5 = 50

Note: Take care not to confuse the terms “parameter” and “argument”. A
function declares its parameters in its parameter list. When you call a
function, you provide values as arguments for the functions’ parameters.

You can take this one step further and make the function more general. With two
parameters, the function can print out a multiple of any two values.

func printMultipleOf(multiplier: Int, andValue: Int) {
 print("\(multiplier) * \(andValue) = \(multiplier *
andValue)")
}
printMultipleOf(multiplier: 4, andValue: 2)

There are now two parameters inside the parentheses after the function name: one
named multiplier and the other named andValue, both of type Int.

Notice that you need to apply the labels in the parameter list to the arguments when
you call a function. In the example above you need to put multiplier: before the
multiplier and andValue: before the value to be multiplied.

In Swift, you should try to make your function calls read like a sentence. In the
example above, you would read the last line of code like this:

Print multiple of multiplier 4 and value 2

You can make this even clearer by giving a parameter a different external name. For
example, you can change the name of the andValue parameter:

func printMultipleOf(multiplier: Int, and value: Int) {
 print("\(multiplier) * \(value) = \(multiplier * value)")

Swift Apprentice Chapter 5: Functions

raywenderlich.com 110

}
printMultipleOf(multiplier: 4, and: 2)

You assign a different external name by writing it in front of the parameter name. In
this example, the internal name of the parameter is now value while the external
name (the argument label) in the function call is now and. You can read the new call
as:

Print multiple of multiplier 4 and 2

The following diagram explains where the external and internal names come from in
the function declaration:

The idea behind this is to allow you to have a function call be readable in a sentence
like manner, but still have an expressive name within the function itself. You could
have written the above function like so:

func printMultipleOf(multiplier: Int, and: Int)

This would have the same effect at the function call of being a nice readable
sentence. However now the parameter inside the function is also called and. In a long
function, it could get confusing to have such a generically named parameter.

If you want to have no external name at all, then you can employ the underscore _, as
you’ve seen in previous chapters:

func printMultipleOf(_ multiplier: Int, and value: Int) {
 print("\(multiplier) * \(value) = \(multiplier * value)")
}
printMultipleOf(4, and: 2)

This makes it even more readable. The function call now reads like so:

Print multiple of 4 and 2

Swift Apprentice Chapter 5: Functions

raywenderlich.com 111

You could, if you so wished, take this even further and use _ for all parameters, like
so:

func printMultipleOf(_ multiplier: Int, _ value: Int) {
 print("\(multiplier) * \(value) = \(multiplier * value)")
}
printMultipleOf(4, 2)

In this example, all parameters have no external name. But this illustrates how you
use the underscore wisely. Here, your expression is still understandable, but more
complex functions that take many parameters can become confusing and unwieldy
with no external parameter names. Imagine if a function took five parameters!

You can also give default values to parameters:

func printMultipleOf(_ multiplier: Int, _ value: Int = 1) {
 print("\(multiplier) * \(value) = \(multiplier * value)")
}
printMultipleOf(4)

The difference is the = 1 after the second parameter, which means that if no value is
provided for the second parameter, it defaults to 1.

Therefore, this code prints the following:

4 * 1 = 4

It can be useful to have a default value when you expect a parameter to be one
particular value the majority of the time, and it will simplify your code when you call
the function.

Return values
All of the functions you’ve seen so far have performed a simple task: printing
something out. Functions can also return a value. The caller of the function can
assign the return value to a variable or constant, or use it directly in an expression.

This means you can use a function to manipulate data. You simply take in data
through parameters, manipulate it and then return it.

Swift Apprentice Chapter 5: Functions

raywenderlich.com 112

Here’s how you define a function that returns a value:

func multiply(_ number: Int, by multiplier: Int) -> Int {
 return number * multiplier
}
let result = multiply(4, by: 2)

To declare that a function returns a value, you add a -> followed by the type of the
return value after the set of parentheses and before the opening brace. In this
example, the function returns an Int.

Inside the function, you use a return statement to return the value. In this example,
you return the product of the two parameters.

It’s also possible to return multiple values through the use of tuples:

func multiplyAndDivide(_ number: Int, by factor: Int)
 -> (product: Int, quotient: Int) {
 return (number * factor, number / factor)
}
let results = multiplyAndDivide(4, by: 2)
let product = results.product
let quotient = results.quotient

This function returns both the product and quotient of the two parameters: It returns
a tuple containing two Int values with appropriate member value names.

The ability to return multiple values through tuples is one of the many things that
makes it such a pleasure to work with Swift. And it turns out to be a very useful
feature, as you’ll see shortly.

You can actually make both of these functions simpler by removing the return, like
so:

func multiply(_ number: Int, by multiplier: Int) -> Int {
 number * multiplier
}

func multiplyAndDivide(_ number: Int, by factor: Int)
 -> (product: Int, quotient: Int) {
 (number * factor, number / factor)
}

You can do this because the function is a single statement. If the function had more
lines of code in it, then you wouldn’t be able to do this. The idea behind this feature
is that in such simple functions it’s so obvious and the return gets in the way of
readability.

Swift Apprentice Chapter 5: Functions

raywenderlich.com 113

For longer functions you need the return because you might make the function
return in many different places.

Advanced parameter handling
Function parameters are constants by default, which means they can’t be modified.

To illustrate this point, consider the following code:

func incrementAndPrint(_ value: Int) {
 value += 1
 print(value)
}

This results in an error:

Left side of mutating operator isn't mutable: 'value' is a 'let'
constant

The parameter value is the equivalent of a constant declared with let. Therefore,
when the function attempts to increment it, the compiler emits an error.

An important point to note is that Swift copies the value before passing it to the
function, a behavior known as pass-by-value.

Note: Pass-by-value and making copies is the standard behavior for all of the
types you’ve seen so far in this book. You’ll see another way for things to be
passed into functions in Chapter 13, “Classes”.

Usually you want this behavior. Ideally, a function doesn’t alter its parameters. If it
did, then you couldn’t be sure of the parameters’ values and you might make
incorrect assumptions in your code, leading to the wrong data.

Sometimes you do want to let a function change a parameter directly, a behavior
known as copy-in copy-out or call by value result. You do it like so:

func incrementAndPrint(_ value: inout Int) {
 value += 1
 print(value)
}

Swift Apprentice Chapter 5: Functions

raywenderlich.com 114

inout before the parameter type indicates that this parameter should be copied in,
that local copy used within the function, and copied back out when the function
returns.

You need to make a slight tweak to the function call to complete this example. Add
an ampersand (&) before the argument, which makes it clear at the call site that you
are using copy-in copy-out:

var value = 5
incrementAndPrint(&value)
print(value)

Now the function can change the value however it wishes.

This example will print the following:

6

6

The function increments value, which retains its modified data after the function
finishes. The value goes in to the function and comes back out again, thus the
keyword inout.

Under certain conditions, the compiler can simplify copy-in copy-out to what is
called pass-by-reference. The argument value isn’t copied into the parameter.
Instead, the parameter will hold a reference to the memory of original value. This
optimization satisfies all requirements of copy-in copy-out while removing the need
for copies.

Overloading
Did you notice how you used the same function name for several different functions
in the previous examples?

func printMultipleOf(multiplier: Int, andValue: Int)
func printMultipleOf(multiplier: Int, and value: Int)
func printMultipleOf(_ multiplier: Int, and value: Int)
func printMultipleOf(_ multiplier: Int, _ value: Int)

This is called overloading and lets you define similar functions using a single name.

Swift Apprentice Chapter 5: Functions

raywenderlich.com 115

However, the compiler must still be able to tell the difference between these
functions. Whenever you call a function, it should always be clear which function
you’re calling. This is usually achieved through a difference in the parameter list:

• A different number of parameters.

• Different parameter types.

• Different external parameter names, such as the case with printMultipleOf.

You can also overload a function name based on a different return type, like so:

func getValue() -> Int {
 31
}

func getValue() -> String {
 "Matt Galloway"
}

Here, there are two functions called getValue(), which return different types. One
an Int and the other a String.

Using these is a little more complicated. Consider the following:

let value = getValue()

How does Swift know which getValue() to call? The answer is, it doesn’t. And it will
print the following error:

error: ambiguous use of 'getValue()'

There’s no way of knowing which one to call. It’s a chicken and egg situation. It’s
unknown what type value is, so Swift doesn’t know which getValue() to call or
what the return type of getValue() should be.

To fix this, you can declare what type you want value to be, like so:

let valueInt: Int = getValue()
let valueString: String = getValue()

This will correctly call the Int version of getValue() in the first instance, and the
String version of getValue() in the second instance.

It’s worth noting that overloading should be used with care. Only use overloading for
functions that are related and similar in behavior.

Swift Apprentice Chapter 5: Functions

raywenderlich.com 116

When only the return type is overloaded, as in the above example, you loose type
inference and so is not recommended.

Mini-exercises
1. Write a function named printFullName that takes two strings called firstName

and lastName. The function should print out the full name defined as firstName
+ " " + lastName. Use it to print out your own full name.

2. Change the declaration of printFullName to have no external name for either
parameter.

3. Write a function named calculateFullName that returns the full name as a
string. Use it to store your own full name in a constant.

4. Change calculateFullName to return a tuple containing both the full name and
the length of the name. You can find a string’s length by using the count
property. Use this function to determine the length of your own full name.

Functions as variables
This may come as a surprise, but functions in Swift are simply another data type. You
can assign them to variables and constants just as you can any other type of value,
such as an Int or a String.

To see how this works, consider the following function:

func add(_ a: Int, _ b: Int) -> Int {
 a + b
}

This function takes two parameters and returns the sum of their values.

You can assign this function to a variable, like so:

var function = add

Here, the name of the variable is function and its type is inferred as (Int, Int) ->
Int from the add function you assign to it.

Notice how the function type (Int, Int) -> Int is written in the same way you
write the parameter list and return type in a function declaration.

Swift Apprentice Chapter 5: Functions

raywenderlich.com 117

Here, the function variable is of a function type that takes two Int parameters and
returns an Int.

Now you can use the function variable in just the same way you’d use add, like so:

function(4, 2)

This returns 6.

Now consider the following code:

func subtract(_ a: Int, _ b: Int) -> Int {
 a - b
}

Here, you declare another function that takes two Int parameters and returns an
Int. You can set the function variable from before to your new subtract function,
because the parameter list and return type of subtract are compatible with the type
of the function variable.

function = subtract
function(4, 2)

This time, the call to function returns 2.

The fact that you can assign functions to variables comes in handy because it means
you can pass functions to other functions. Here’s an example of this in action:

func printResult(_ function: (Int, Int) -> Int, _ a: Int, _ b:
Int) {
 let result = function(a, b)
 print(result)
}
printResult(add, 4, 2)

printResult takes three parameters:

1. function is of a function type that takes two Int parameters and returns an Int,
declared like so: (Int, Int) -> Int.

2. a is of type Int.

3. b is of type Int.

Swift Apprentice Chapter 5: Functions

raywenderlich.com 118

printResult calls the passed-in function, passing into it the two Int parameters.
Then it prints the result to the console:

6

It’s extremely useful to be able to pass functions to other functions, and it can help
you write reusable code. Not only can you pass data around to manipulate, but
passing functions as parameters also means you can be flexible about what code
executes.

The land of no return
Some functions are never, ever, intended to return control to the caller. For an
example, think about a function that is designed to crash an application. Perhaps this
sounds strange, so let me explain: if an application is about to work with corrupt
data, it’s often best to crash rather than continue into an unknown and potentially
dangerous state. The function fatalError("reason to terminate") is an
example of a function like this. It prints the reason for the fatal error and then halts
execution to prevent further damage.

Another example of a non-returning function is one that handles an event loop. An
event loop is at the heart of every modern application that takes input from the user
and displays things on a screen. The event loop services requests coming from the
user, then passes these events to the application code, which in turn causes the
information to be displayed on the screen. The loop then cycles back and services the
next event.

These event loops are often started in an application by calling a function that is
known to never return. Once you’re coding iOS or macOS apps, think back to this
paragraph when you encounter UIApplicationMain or NSApplicationMain.

Swift will complain to the compiler that a function is known to never return, like so:

func noReturn() -> Never {

}

Notice the special return type Never, indicating that this function will never return.

Swift Apprentice Chapter 5: Functions

raywenderlich.com 119

If you wrote this code you would get the following error:

Function with uninhabited return type 'Never' is missing call to
another never-returning function on all paths

This is a rather long-winded way of saying that the function doesn’t call another “no
return” function before it returns itself. When it reaches the end, the function
returns to the place from which it was called, breaching the contract of the Never
return type.

A crude, but honest, implementation of a function that wouldn’t return would be as
follows:

func infiniteLoop() -> Never {
 while true {
 }
}

You may be wondering why bother with this special return type. It’s useful because
by the compiler knowing that the function won’t ever return, it can make certain
optimizations when generating the code to call the function. Essentially, the code
which calls the function doesn’t need to bother doing anything after the function
call, because it knows that this function will never end before the application is
terminated.

Writing good functions
Functions let you solve many problems. The best do one simple task , making them
easier to mix, match, and model into more complex behaviors.

Make functions that are easy to use and understand! Give them well-defined inputs
that produce the same output every time. You’ll find it’s easier to reason about and
test good, clean, simple functions in isolation.

Commenting your functions
All good software developers document their code. :]

Documenting your functions is an important step to making sure that when you
return to the code later or share it with other people, it can be understood without
having to trawl through the code.

Swift Apprentice Chapter 5: Functions

raywenderlich.com 120

Fortunately Swift has a very easy way to document functions which integrates well
with Xcode’s code completion and other features.

It uses the defacto Doxygen commenting standard used by many other languages
outside of Swift. Let’s take a look at how you can document a function:

/// Calculates the average of three values
/// - Parameters:
/// - a: The first value.
/// - b: The second value.
/// - c: The third value.
/// - Returns: The average of the three values.
func calculateAverage(of a: Double, and b: Double, and c:
Double) -> Double {
 let total = a + b + c
 let average = total / 3
 return average
}
calculateAverage(of: 1, and: 3, and: 5)

Instead of the usual double-/, you use triple-/ instead. Then the first line is the
description of what the function does. Following that is a list of the parameters and
finally a description of the return value.

If you forget the format of a documentation comment, simply highlight the function
and press "Option-Command-/" in Xcode. The Xcode editor will insert a comment
template for you that you can then fill out.

When you create this kind of code documentation, you will find that the comment
changes font in Xcode from the usual monospace font. Neat right? Well yes, but
there’s more.

First, your documentation is shown when code completion comes up, like so:

Swift Apprentice Chapter 5: Functions

raywenderlich.com 121

Also you can hold the option key and click on the function name and your
documentation is shown in a handy popover, like so:

Both of these are very useful and you should consider documenting all your
functions, especially those that are frequently used or complicated. Future you will
thank you later. :]

Challenges
Before moving on, here are some challenges to test your knowledge of functions. It is
best if you try to solve them yourself, but solutions are available if you get stuck.
These came with the download or are available at the printed book’s source code link
listed in the introduction.

Challenge 1: Looping with stride functions
In the last chapter you wrote some for loops with countable ranges. Countable
ranges are limited in that they must always be increasing by one. The Swift
stride(from:to:by:) and stride(from:through:by:) functions let you loop
much more flexibly.

Swift Apprentice Chapter 5: Functions

raywenderlich.com 122

For example, if you wanted to loop from 10 to 20 by 4’s you can write:

for index in stride(from: 10, to: 22, by: 4) {
 print(index)
}
// prints 10, 14, 18

for index in stride(from: 10, through: 22, by: 4) {
 print(index)
}
// prints 10, 14, 18, and 22

• What is the difference between the two stride function overloads?

• Write a loop that goes from 10.0 to (and including) 9.0, decrementing by 0.1.

Challenge 2: It’s prime time
When I’m acquainting myself with a programming language, one of the first things I
do is write a function to determine whether or not a number is prime. That’s your
second challenge.

First, write the following function:

func isNumberDivisible(_ number: Int, by divisor: Int) -> Bool

You’ll use this to determine if one number is divisible by another. It should return
true when number is divisible by divisor.

Hint: You can use the modulo (%) operator to help you out here.

Next, write the main function:

func isPrime(_ number: Int) -> Bool

This should return true if number is prime, and false otherwise. A number is prime
if it’s only divisible by 1 and itself. You should loop through the numbers from 1 to
the number and find the number’s divisors. If it has any divisors other than 1 and
itself, then the number isn’t prime. You’ll need to use the
isNumberDivisible(_:by:) function you wrote earlier.

Use this function to check the following cases:

isPrime(6) // false
isPrime(13) // true
isPrime(8893) // true

Swift Apprentice Chapter 5: Functions

raywenderlich.com 123

Hint 1: Numbers less than 0 should not be considered prime. Check for this case at
the start of the function and return early if the number is less than 0.

Hint 2: Use a for loop to find divisors. If you start at 2 and end before the number
itself, then as soon as you find a divisor, you can return false.

Hint 3: If you want to get really clever, you can simply loop from 2 until you reach
the square root of number, rather than going all the way up to number itself. I’ll leave
it as an exercise for you to figure out why. It may help to think of the number 16,
whose square root is 4. The divisors of 16 are 1, 2, 4, 8 and 16.

Challenge 3: Recursive functions
In this challenge, you’re going to see what happens when a function calls itself, a
behavior called recursion. This may sound unusual, but it can be quite useful.

You’re going to write a function that computes a value from the Fibonacci
sequence. Any value in the sequence is the sum of the previous two values. The
sequence is defined such that the first two values equal 1. That is, fibonacci(1) =
1 and fibonacci(2) = 1.

Write your function using the following declaration:

func fibonacci(_ number: Int) -> Int

Then, verify you’ve written the function correctly by executing it with the following
numbers:

fibonacci(1) // = 1
fibonacci(2) // = 1
fibonacci(3) // = 2
fibonacci(4) // = 3
fibonacci(5) // = 5
fibonacci(10) // = 55

Hint 1: For values of number less than 0, you should return 0.

Hint 2: To start the sequence, hard-code a return value of 1 when number equals 1 or
2.

Hint 3: For any other value, you’ll need to return the sum of calling fibonacci with
number - 1 and number - 2.

Swift Apprentice Chapter 5: Functions

raywenderlich.com 124

Key points
• You use a function to define a task that you can execute as many times as you like

without having to write the code multiple times.

• Functions can take zero or more parameters and optionally return a value.

• You can add an external name to a function parameter to change the label you use
in a function call, or you can use an underscore to denote no label.

• Parameters are passed as constants, unless you mark them as inout, in which case
they are copied-in and copied-out.

• Functions can have the same name with different parameters. This is called
overloading.

• Functions can have a special Never return type to inform Swift that this function
will never exit.

• You can assign functions to variables and pass them to other functions.

• Strive to create functions that are clearly named and have one job with repeatable
inputs and outputs.

• Function documentation can be created by prefixing the function with a comment
section using ///.

Swift Apprentice Chapter 5: Functions

raywenderlich.com 125

6Chapter 6: Optionals

By Matt Galloway

All the variables and constants you’ve dealt with so far have had concrete values.
When you had a string variable, like var name, it had a string value associated with
it, like "Matt Galloway". It could have been an empty string, like "", but
nevertheless, there was a value to which you could refer.

That’s one of the built-in safety features of Swift: If the type says Int or String,
then there’s an actual integer or string there, guaranteed.

This chapter will introduce you to the concept of optionals, a special Swift type that
can represent not just a value, but also the absence of a value. By the end of this
chapter, you’ll know why you need optionals and how to use them safely.

raywenderlich.com 126

Introducing nil
Sometimes, it’s useful to represent the absence of a value. Imagine a scenario where
you need to refer to a person’s identifying information; you want to store the
person’s name, age and occupation. Name and age are both things that must have a
value — everyone has them. But not everyone is employed, so the absence of a value
for occupation is something you need to be able to handle.

Without knowing about optionals, this is how you might represent the person’s
name, age and occupation:

var name = "Matt Galloway"
var age = 30
var occupation = "Software Developer & Author"

But what if I become unemployed? Maybe I’ve won the lottery and want to give up
work altogether (I wish!). This is when it would be useful to be able to refer to the
absence of a value.

Why couldn’t you just use an empty string? You could, but optionals are a much
better solution. Read on to see why.

Sentinel values
A value that represents a special condition such as the absence of a value is known as
a sentinel value, or simply, special value. That’s what your empty string would be in
the previous example.

Let’s look at another example. Say your code requests something from a server, and
you use a variable to store any returned error code:

var errorCode = 0

In the success case, you represent the lack of an error with a zero. That means 0 is a
sentinel value.

Just like the empty string for occupation, this works, but it’s potentially confusing for
the programmer because it arbitrarily steals a value. 0 might actually be a valid error
code — or could be in the future, if the server changed how it responded. Either way,
you can’t be completely confident that the server didn’t return an error without
consulting the documentation about special values.

In these two examples, it would be much better if there were a special type that could

Swift Apprentice Chapter 6: Optionals

raywenderlich.com 127

represent the absence of a value. It would then be explicit when a value exists and
when one doesn’t that the compiler could check for you.

Nil is the name given to the absence of a value, and you’re about to see how Swift
incorporates this concept directly into the language in a rather elegant way.

Some other programming languages simply embrace sentinel values. Some, like
Objective-C, have the concept of nil, but it is merely a synonym for zero. It is just
another sentinel value.

Swift introduces a whole new type, Optional, that handles the possibility a value
could be nil. If you’re handling a non-optional type, then you’re guaranteed to have
a value and don’t need to worry about a sentinel value with special meaning.
Similarly, if you are using an optional type, then you know you must handle the nil
case. It removes the ambiguity introduced by using sentinel values.

Introducing optionals
Optionals are Swift’s solution to the problem of representing both a value and the
absence of a value. An optional is allowed to hold either a value or nil.

Think of an optional as a box: it either contains exactly one value, or is empty. When
it doesn’t contain a value, it’s said to contain nil. The box itself always exists; it’s
always there for you to open and look inside.

A string or an integer, on the other hand, doesn’t have this box around it. Instead
there’s always a value, such as "hello" or 42. Remember, non-optional types are
guaranteed to have an actual value.

Note: Those of you who’ve studied physics may be thinking about
Schroedinger’s cat right now. Optionals are a little bit like that except it’s not a
matter of life and death!

Swift Apprentice Chapter 6: Optionals

raywenderlich.com 128

You declare a variable of an optional type by using the following syntax:

var errorCode: Int?

The only difference between this and a standard declaration is the question mark at
the end of the type. In this case, errorCode is an “optional Int”. This means the
variable itself is like a box containing either an Int or nil.

Note: You can add a question mark after any type to create an optional type.
This optional type is said to wrap the regular non-optional type. For example,
optional type String? wraps type String. In other words: an optional box of
type String? holds either a String or nil.

Also, note how an optional type must be made explicit using a type annotation
(here : Int?). Optional types can never be inferred from initialization values,
as those values are of a regular, non-optional type, or nil, which can be used
with any optional type.

Setting the value is simple. You can either set it to an Int, like so:

errorCode = 100

Or you can set it to nil, like so:

errorCode = nil

This diagram may help you visualize what’s happening:

The optional box always exists. When you assign 100 to the variable, you’re filling
the box with the value. When you assign nil to the variable, you’re emptying the
box.

Take a few minutes to think about this concept. The box analogy will be a big help as
you go through the rest of the chapter and begin to use optionals.

Swift Apprentice Chapter 6: Optionals

raywenderlich.com 129

Mini-exercises
1. Make an optional String called myFavoriteSong. If you have a favorite song, set

it to a string representing that song. If you have more than one favorite song or
no favorite, set the optional to nil.

2. Create a constant called parsedInt and set it equal to Int("10") which tries to
parse the string 10 and convert it to an Int. Check the type of parsedInt using
Option-Click. Why is it an optional?

3. Change the string being parsed in the above exercise to a non-integer (try dog for
example). What does parsedInt equal now?

Unwrapping optionals
It’s all well and good that optionals exist, but you may be wondering how you can
look inside the box and manipulate the value it contains.

Take a look at what happens when you print out the value of an optional:

var result: Int? = 30
print(result)

This prints the following:

Optional(30)

Note: You will also see a warning on this line which says “Expression
implicitly coerced from 'Int?' to Any”. This is because Swift warns that you’re
using an optional in the place of the Any type as it’s something that usually
means you did something wrong. To silence the warning, you can change the
code to print(result as Any).

That isn’t really what you wanted — although if you think about it, it makes sense.
Your code has printed the box. The result says, “result is an optional that contains
the value 30”.

Swift Apprentice Chapter 6: Optionals

raywenderlich.com 130

To see how an optional type is different from a non-optional type, see what happens
if you try to use result as if it were a normal integer:

print(result + 1)

This code triggers an error:

Value of optional type 'Int?' must be unwrapped to a value of
type 'Int'

It doesn’t work because you’re trying to add an integer to a box — not to the value
inside the box, but to the box itself. That doesn’t make sense.

Force unwrapping
The error message gives an indication of the solution: It tells you that the optional
must be unwrapped. You need to unwrap the value from its box. It’s like Christmas!

Let’s see how that works. Consider the following declarations:

var authorName: String? = "Matt Galloway"
var authorAge: Int? = 30

There are two different methods you can use to unwrap these optionals. The first is
known as force unwrapping, and you perform it like so:

var unwrappedAuthorName = authorName!
print("Author is \(unwrappedAuthorName)")

This code prints:

Author is Matt Galloway

Great! That’s what you’d expect.

The exclamation mark after the variable name tells the compiler that you want to
look inside the box and take out the value. The result is a value of the wrapped type.
This means unwrappedAuthorName is of type String, not String?.

Swift Apprentice Chapter 6: Optionals

raywenderlich.com 131

The use of the word “force” and the exclamation mark ! probably conveys a sense of
danger to you, and it should.

You should use force unwrapping sparingly. To see why, consider what happens when
the optional doesn’t contain a value:

authorName = nil
print("Author is \(authorName!)")

This code produces the following error that you will see in your console:

Fatal error: Unexpectedly found nil while unwrapping an Optional
value

The error occurs because the variable contains no value when you try to unwrap it.
What’s worse is that you get this error at runtime rather than compile time – which
means you’d only notice the error if you happened to execute this code with some
invalid input.

Worse yet, if this code were inside an app, the runtime error would cause the app to
crash!

How can you play it safe?

To stop the runtime error here, you could wrap the code that unwraps the optional in
a check, like so:

if authorName != nil {
 print("Author is \(authorName!)")
} else {
 print("No author.")
}

The if statement checks if the optional contains nil. If it doesn’t, that means it
contains a value you can unwrap.

The code is now safe, but it’s still not perfect. If you rely on this technique, you’ll
have to remember to check for nil every time you want to unwrap an optional. That
will start to become tedious, and one day you’ll forget and once again end up with
the possibility of a runtime error.

Back to the drawing board, then!

Swift Apprentice Chapter 6: Optionals

raywenderlich.com 132

Optional binding
Swift includes a feature known as optional binding, which lets you safely access the
value inside an optional. You use it like so:

if let unwrappedAuthorName = authorName {
 print("Author is \(unwrappedAuthorName)")
} else {
 print("No author.")
}

You’ll immediately notice that there are no exclamation marks here. This optional
binding gets rid of the optional type. If the optional contains a value, this value is
unwrapped and stored in, or bound to, the constant unwrappedAuthorName. The if
statement then executes the first block of code, within which you can safely use
unwrappedAuthorName, as it’s a regular non-optional String.

If the optional doesn’t contain a value, then the if statement executes the else
block. In that case, the unwrappedAuthorName variable doesn’t even exist.

You can see how optional binding is much safer than force unwrapping, and you
should use it whenever an optional might be nil. Force unwrapping is only
appropriate when an optional is guaranteed contain a value.

Because naming things is so hard, it’s common practice to give the unwrapped
constant the same name as the optional (thereby shadowing that optional):

if let authorName = authorName {
 print("Author is \(authorName)")
} else {
 print("No author.")
}

You can even unwrap multiple values at the same time, like so:

if let authorName = authorName,
 let authorAge = authorAge {
 print("The author is \(authorName) who is \(authorAge) years
old.")
} else {
 print("No author or no age.")
}

This code unwraps two values. It will only execute the if part of the statement when
both optionals contain a value.

Swift Apprentice Chapter 6: Optionals

raywenderlich.com 133

You can combine unwrapping multiple optionals with additional Boolean checks. For
example:

if let authorName = authorName,
 let authorAge = authorAge,
 authorAge >= 40 {
 print("The author is \(authorName) who is \(authorAge) years
old.")
} else {
 print("No author or no age or age less than 40.")
}

Here, you unwrap name and age, and check that age is greater than or equal to 40.
The expression in the if statement will only be true if name is non-nil, and age is
non-nil, and age is greater than or equal to 40.

Now you know how to safely look inside an optional and extract its value, if one
exists.

Mini-exercises
1. Using your myFavoriteSong variable from earlier, use optional binding to check

if it contains a value. If it does, print out the value. If it doesn’t, print "I don’t
have a favorite song."

2. Change myFavoriteSong to the opposite of what it is now. If it’s nil, set it to a
string; if it’s a string, set it to nil. Observe how your printed result changes.

Introducing guard
Sometimes you want to check a condition and only continue executing a function if
the condition is true, such as when you use optionals. Imagine a function that
fetches some data from the network. That fetch might fail if the network is down.
The usual way to encapsulate this behavior is using an optional, which has a value if
the fetch succeeds, and nil otherwise.

Swift has a useful and powerful feature to help in situations like this: the guard
statement. Let’s take a look at it with this contrived example for now:

func guardMyCastle(name: String?) {
 guard let castleName = name else {
 print("No castle!")
 return
 }

Swift Apprentice Chapter 6: Optionals

raywenderlich.com 134

 // At this point, `castleName` is a non-optional String

 print("Your castle called \(castleName) was guarded!")
}

The guard statement comprises guard followed by a condition that can include both
Boolean expressions and optional bindings, followed by else, followed by a block of
code. The block of code covered by the else will execute if the condition is false. The
block of code that executes in the case of the condition being false must return. If you
accidentally forget, the compiler will stop you — this is the true beauty of the guard
statement. You may hear programmers talking about the “happy path” through a
function; this is the path you’d expect to happen most of the time. Any other path
followed would be due to an error, or another reason why the function should return
earlier than expected.

Guard statements ensure the happy path remains on the left hand side of the code;
this is usually regarded as a good thing as it makes code more readable and
understandable. Also, because the guard statement must return in the false case, the
Swift compiler knows that if the condition was true, anything checked in the guard
statement’s condition must be true for the remainder of the function. This means the
compiler can make certain optimizations. You don’t need to understand how these
optimizations work, or even what they are, since Swift is designed to be user-friendly
and fast.

You could simply use an if-let binding and return in the case where it’s nil.
However when you use guard you are explicitly saying that this must return if the
statement in the guard is false, thus the compiler can make sure that you have added
a return. The compiler is providing some nice safety for you!

Let’s see guard in a more "real world" example. Consider the following function:

func calculateNumberOfSides(shape: String) -> Int? {
 switch shape {
 case "Triangle":
 return 3
 case "Square":
 return 4
 case "Rectangle":
 return 4
 case "Pentagon":
 return 5
 case "Hexagon":
 return 6
 default:
 return nil

Swift Apprentice Chapter 6: Optionals

raywenderlich.com 135

 }
}

This function takes a shape name and returns the number of sides that shape has. If
the shape isn’t known, or you pass something that isn’t a shape, then it returns nil.

You could use this function like so:

func maybePrintSides(shape: String) {
 let sides = calculateNumberOfSides(shape: shape)

 if let sides = sides {
 print("A \(shape) has \(sides) sides.")
 } else {
 print("I don’t know the number of sides for \(shape).")
 }
}

There’s nothing wrong with this, and it would work.

However the same logic could be written with a guard statement like so:

func maybePrintSides(shape: String) {
 guard let sides = calculateNumberOfSides(shape: shape) else {
 print("I don’t know the number of sides for \(shape).")
 return
 }

 print("A \(shape) has \(sides) sides.")
}

When your functions get more complex, guard really comes into its own. You may
have multiple guards at the top of the function that set up the initial conditions
correctly. You’ll see it used extensively in Swift code.

Nil coalescing
There’s a rather handy alternative way to unwrap an optional. You use it when you
want to get a value out of the optional no matter what — and in the case of nil, you’ll
use a default value. This is called nil coalescing. Here’s how it works:

var optionalInt: Int? = 10
var mustHaveResult = optionalInt ?? 0

The nil coalescing happens on the second line, with the double question mark (??),
known as the nil coalescing operator. This line means mustHaveResult will equal

Swift Apprentice Chapter 6: Optionals

raywenderlich.com 136

either the value inside optionalInt, or 0 if optionalInt contains nil. In this
example, mustHaveResult contains the concrete Int value of 10.

The previous code is equivalent to the following:

var optionalInt: Int? = 10
var mustHaveResult: Int
if let unwrapped = optionalInt {
 mustHaveResult = unwrapped
} else {
 mustHaveResult = 0
}

Set the optionalInt to nil, like so:

optionalInt = nil
mustHaveResult = optionalInt ?? 0

Now mustHaveResult equals 0.

Challenges
Before moving on, here are some challenges to test your knowledge of optionals. It is
best if you try to solve them yourself, but solutions are available if you get stuck.
These came with the download or are available at the printed book’s source code link
listed in the introduction.

Challenge 1: You be the compiler
Which of the following are valid statements?

var name: String? = "Ray"
var age: Int = nil
let distance: Float = 26.7
var middleName: String? = nil

Challenge 2: Divide and conquer
First, create a function that returns the number of times an integer can be divided by
another integer without a remainder. The function should return nil if the division
doesn’t produce a whole number. Name the function divideIfWhole.

Swift Apprentice Chapter 6: Optionals

raywenderlich.com 137

Then, write code that tries to unwrap the optional result of the function. There
should be two cases: upon success, print "Yep, it divides \(answer) times",
and upon failure, print "Not divisible :[".

Finally, test your function:

1. Divide 10 by 2. This should print "Yep, it divides 5 times."

2. Divide 10 by 3. This should print "Not divisible :[."

Hint 1: Use the following as the start of the function signature:

func divideIfWhole(_ value: Int, by divisor: Int)

You’ll need to add the return type, which will be an optional!

Hint 2: You can use the modulo operator (%) to determine if a value is divisible by
another; recall that this operation returns the remainder from the division of two
numbers. For example, 10 % 2 = 0 means that 10 is divisible by 2 with no
remainder, whereas 10 % 3 = 1 means that 10 is divisible by 3 with a remainder of
1.

Challenge 3: Refactor and reduce
The code you wrote in the last challenge used if statements. In this challenge,
refactor that code to use nil coalescing instead. This time, make it print "It
divides X times" in all cases, but if the division doesn’t result in a whole number,
then X should be 0.

Challenge 4: Nested optionals
Consider the following nested optional — it corresponds to a number inside a box
inside a box inside a box.

let number: Int??? = 10

If you print number you get the following:

print(number)
// Optional(Optional(Optional(10)))

print(number!)
// Optional(Optional(10))

Swift Apprentice Chapter 6: Optionals

raywenderlich.com 138

Do the following:

1. Fully force unwrap and print number.

2. Optionally bind and print number with if let.

3. Write a function printNumber(_ number: Int???) that uses guard to print the
number only if it is bound.

Key points
• nil represents the absence of a value.

• Non-optional variables and constants are never nil.

• Optional variables and constants are like boxes that can contain a value or be
empty (nil).

• To work with the value inside an optional, you must first unwrap it from the
optional.

• The safest ways to unwrap an optional’s value is by using optional binding or nil
coalescing. Use forced unwrapping only when appropriate, as it could produce a
runtime error.

• You can guard let to bind an optional. If the binding fails, the compiler forces
you to exit the current function (or halt execution). This guarantees that your
program never execute with uninitialized value.

Swift Apprentice Chapter 6: Optionals

raywenderlich.com 139

Section II: Collection Types

So far, you’ve mostly seen data in the form of single elements. Although tuples can
have multiple pieces of data, you have to specify the size up front; a tuple with three
strings is a completely different type from a tuple with two strings, and converting
between them isn’t trivial. In this section, you’ll learn about collection types in
Swift. Collections are flexible “containers” that let you store any number of values
together.

There are several collection types in Swift, but three important ones are arrays,
dictionaries and sets. You’ll learn about these here:

• Chapter 7, Arrays, Dictionaries, and Sets

Next you’ll learn how to apply custom operations and loop over collection types
with:

• Chapter 8, Collection Iterations With Closures

Finally, you will revisit strings, which are actually bi-directional collections of
unicode characters in:

• Chapter 9, Strings

The collection types have similar interfaces but very different use cases. As you read
through these chapters, keep the differences in mind, and you’ll begin to develop a
feel for which type you should use when.

As part of exploring the differences between the collection types, you’ll also consider
performance: how quickly the collections can perform certain operations, such as
adding to the collection or searching through it.

The usual way to talk about performance is with big-O notation. If you’re not
familiar with it already, read on for a brief introduction.

raywenderlich.com 140

Introducing big-O notation
Big-O notation is a way to describe running time, or how long an operation takes to
complete. The idea is that the exact time an operation takes isn’t important; it’s the
relative difference in scale that matters.

Imagine you have a list of names in some random order, and you have to look up the
first name on the list. It doesn’t matter whether the list has a single name or a
million names — glancing at the very first name always takes the same amount of
time. That’s an example of a constant time operation, or O(1) in big-O notation.

Now say you have to find a particular name on the list. You need to scan through the
list and look at every single name until you either find a match or reach the end.
Again, we’re not concerned with the exact amount of time this takes, just the relative
time compared to other operations.

To figure out the running time, think in terms of units of work. You need to look at
every name, so consider there to be one “unit” of work per name. If you had 100
names, that’s 100 units of work. What if you double the number of names to 200?
How does that change the amount of work? The answer is it also doubles the amount
of work. Similarly, if you quadruple the number of names, that quadruples the
amount of work.

This is an example of a linear time operation, or O(N) in big-O notation. The size of
the input is the variable N, which means the amount of time the operation takes is
also N. There’s a direct, linear relationship between the input size (the number of
names in the list) and the time it will take to search for one name.

You can see why constant time operations have the number 1 in O(1). They’re just a
single unit of work, no matter what!

You can read more about big-O notation by searching the Web. You’ll only need
constant time and linear time in this book, but there are other such time
complexities out there.

Big-O notation is particularly important when dealing with collection types, because
collections can store very large amounts of data, and you need to be aware of
running times when you add, delete or edit values.

For example, if collection type A has constant-time searching and collection type B
has linear-time searching, which you choose to use will depend on how much
searching you’re planning to do.

Swift Apprentice Section II: Collection Types

raywenderlich.com 141

7Chapter 7: Arrays,
Dictionaries & Sets
By Eli Ganim

As discussed in the introduction to this section, collections are flexible "containers"
that let you store any number of values together. Before discussing these collections,
you need to understand the concept of mutable vs immutable collections.

raywenderlich.com 142

Mutable versus immutable collections
Just like the previous types you’ve read about, such as Int or String, when you
create a collection you must declare it as either a constant or a variable.

If the collection doesn’t need to change after you’ve created it, you should make it
immutable by declaring it as a constant with let. Alternatively, if you need to add,
remove or update values in the collection, then you should create a mutable
collection by declaring it as a variable with var.

Arrays
Arrays are the most common collection type you’ll run into in Swift. Arrays are
typed, just like regular variables and constants, and store multiple values like a
simple list.

Before you create your first array, take some time to consider in detail what an array
is and why you might want to use one.

What is an array?
An array is an ordered collection of values of the same type. The elements in the
array are zero-indexed, which means the index of the first element is 0, the index of
the second element is 1, and so on. Knowing this, you can work out that the last
element’s index is the number of values in the array minus one.

There are five elements in this array, at indices 0–4.

All values are of type String, so you can’t add non-string types to an array that
holds strings. Notice that the same value can appear multiple times.

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 143

When are arrays useful?
Arrays are useful when you want to store your items in a particular order. You may
want the elements sorted, or you may need to fetch elements by index without
iterating through the entire array.

For example, if you were storing high score data, then order would matter. You would
want the highest score to come first in the list (i.e. at index 0) with the next-highest
score after that, and so on.

Creating arrays
The easiest way to create an array is by using an array literal. This is a concise way
to provide array values. An array literal is a list of values separated by commas and
surrounded by square brackets.

let evenNumbers = [2, 4, 6, 8]

Since the array literal only contains integers, Swift infers the type of evenNumbers to
be an array of Int values. This type is written as [Int]. The type inside the square
brackets defines the type of values the array can store, which the compiler will
enforce when you add elements to the array.

If you try to add a string, for example, the compiler will return an error and your code
won’t compile. An empty array can be created using the empty array literal [].
Because the compiler isn’t able to infer a type from this, you need to use a type
annotation to make the type explicit:

var subscribers: [String] = []

It’s also possible to create an array with all of its values set to a default value:

let allZeros = Array(repeating: 0, count: 5) // [0, 0, 0, 0, 0]

It’s good practice to declare arrays that aren’t going to change as constants. For
example, consider this array:

let vowels = ["A", "E", "I", "O", "U"]

vowels is an array of strings and its values can’t be changed. But that’s fine, since the
list of vowels doesn’t tend to change very often!

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 144

Accessing elements
Being able to create arrays is useless unless you know how to fetch values from an
array. In this section, you’ll learn several different ways to access elements in an
array.

Using properties and methods
Imagine you’re creating a game of cards, and you want to store the players’ names in
an array. The list will need to change as players join or leave the game, so you need
to declare a mutable array:

var players = ["Alice", "Bob", "Cindy", "Dan"]

In this example, players is a mutable array because you assigned it to a variable.

Before the game starts, you need to make sure there are enough players. You can use
the isEmpty property to check if there’s at least one player:

print(players.isEmpty)
// > false

Note: You’ll learn all about properties in Chapter 11, “Properties”. For now,
just think of them as variables that are built in to values. To access a property,
place a dot after the name of the constant or variable that holds the value and
follow it by the name of the property you want to access.

The array isn’t empty, but you need at least two players to start a game. You can get
the number of players using the count property:

if players.count < 2 {
 print("We need at least two players!")
} else {
 print("Let’s start!")
}
// > Let’s start!

It’s time to start the game! You decide that the order of play is by the order of names
in the array. How would you get the first player’s name?

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 145

Arrays provide the first property to fetch the first object of an array:

var currentPlayer = players.first

Printing the value of currentPlayer reveals something interesting:

print(currentPlayer as Any)
// > Optional("Alice")

The property first actually returns an optional, because if the array were empty,
first would return nil. The print() method realizes currentPlayer is optional
and generates a warning. To suppress the warning, simply add as Any to the type to
be printed. Similarly, arrays have a last property that returns the last value in an
array, or nil if the array is empty:

print(players.last as Any)
// > Optional("Dan")

Another way to get values from an array is by calling min(). This method returns the
element with the lowest value in the array — not the lowest index! If the array
contained strings, then it would return the string that’s the lowest in alphabetical
order, which in this case is "Alice":

currentPlayer = players.min()
print(currentPlayer as Any)
// > Optional("Alice")

Note: You’ll learn all about methods in Chapter 12, “Methods”. For now, just
think of them as functions that are built in to values. To call a method, place a
dot after the name of the constant or variable that holds the value and follow
it by the name of the method you want to call. Just like with functions, don’t
forget to include the parameter list, even if it’s empty, when calling a method.

Obviously, first and min() will not always return the same value. For example:

print([2, 3, 1].first as Any)
// > Optional(2)
print([2, 3, 1].min() as Any)
// > Optional(1)

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 146

As you might have guessed, arrays also have a max() method.

Note: The first and last properties and the min() and max() methods
aren’t unique to arrays. Every collection type has these properties and
methods, in addition to a plethora of others. You’ll learn more about this
behavior when you read about protocols in Chapter 16, “Protocols”.

Now that you know how to get the first player, you’ll announce who that player is:

if let currentPlayer = currentPlayer {
 print("\(currentPlayer) will start")
}
// > Alice will start

You use if let to unwrap the optional you got back from min(); otherwise, the
statement would print Optional("Alice") will start, which is not what you
want.

These properties and methods are helpful if you want to get the first, last, minimum
or maximum elements. But what if the element you want can’t be obtained with one
of these properties or methods?

Using subscripting
The most convenient way to access elements in an array is by using the subscript
syntax. This syntax lets you access any value directly by using its index inside square
brackets:

var firstPlayer = players[0]
print("First player is \(firstPlayer)")
// > First player is "Alice"

Because arrays are zero-indexed, you use index 0 to fetch the first object. You can use
a greater index to get the next elements in the array, but if you try to access an index
that’s beyond the size of the array, you’ll get a runtime error.

var player = players[4]
// > fatal error: Index out of range

You receive this error because players contains only four strings. Index 4 represents
the fifth element, but there is no fifth element in this array.

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 147

When you use subscripts, you don’t have to worry about optionals, since trying to
access a non-existing index doesn’t return nil; it simply causes a runtime error.

Using countable ranges to make an ArraySlice
You can use the subscript syntax with countable ranges to fetch more than a single
value from an array. For example, if you’d like to get the next two players, you could
do this:

let upcomingPlayersSlice = players[1...2]
print(upcomingPlayersSlice[1], upcomingPlayersSlice[2])
// > "Bob Cindy\n"

The constant upcomingPlayersSlice is actually an ArraySlice of the original
array. The reason for this type difference is to make clear that
upcomingPlayersSlice shares storage with players.

The range you used is 1...2, which represents the second and third items in the
array. You can use an index here as long as the start value is smaller than or equal to
the end value and within the bounds of the array.

It is also easy to make a brand-new, zero-indexed Array from an ArraySlice like so:

let upcomingPlayersArray = Array(players[1...2])
print(upcomingPlayersArray[0], upcomingPlayersArray[1])
// > "Bob Cindy\n"

Checking for an element
You can check if there’s at least one occurrence of a specific element in an array by
using contains(_:), which returns true if it finds the element in the array, and
false otherwise.

You can use this strategy to write a function that checks if a given player is in the
game:

func isEliminated(player: String) -> Bool {
 !players.contains(player)
}

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 148

Now you can use this function any time you need to check if a player has been
eliminated:

print(isEliminated(player: "Bob"))
// > false

You could even test for the existence of an element in a specific range using an
ArraySlice:

players[1...3].contains("Bob") // true

Now that you can get data out of your arrays, it’s time to look at mutable arrays and
how to change their values.

Modifying arrays
You can make all kinds of changes to mutable arrays, such as adding and removing
elements, updating existing values, and moving elements around into a different
order. In this section, you’ll see how to work with the array to match up what’s going
on with your game.

Appending elements
If new players want to join the game, they need to sign up and add their names to the
array. Eli is the first player to join the existing four players. You can add Eli to the end
of the array using the append(_:) method:

players.append("Eli")

If you try to append anything other than a string, the compiler will show an error.
Remember, arrays can only store values of the same type. Also, append(_:) only
works with mutable arrays.

The next player to join the game is Gina. You can append her to the game another
way, by using the += operator:

players += ["Gina"]

The right-hand side of this expression is an array with a single element: the string
"Gina". By using +=, you’re appending the elements of that array to players.

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 149

Now the array looks like this:

print(players)
// > ["Alice", "Bob", "Cindy", "Dan", "Eli", "Gina"]

Here, you added a single element to the array, but you can see how easy it would be
to append multiple items using the += operator by adding more names after Gina’s.

Inserting elements
An unwritten rule of this card game is that the players’ names have to be in
alphabetical order. This list is missing a player that starts with the letter F. Luckily,
Frank has just arrived. You want to add him to the list between Eli and Gina. To do
that, you can use the insert(_:at:) method:

players.insert("Frank", at: 5)

The at argument defines where you want to add the element. Remember that the
array is zero-indexed, so index 5 is Gina’s index, causing her to move up as Frank
takes her place.

Removing elements
During the game, the other players caught Cindy and Gina cheating. They should be
removed from the game! You know that Gina is last in the players list, so you can
remove her easily with the removeLast() method:

var removedPlayer = players.removeLast()
print("\(removedPlayer) was removed")
// > Gina was removed

This method does two things: It removes the last element and then returns it, in case
you need to print it or store it somewhere else — like in an array of cheaters!

To remove Cindy from the game, you need to know the exact index where her name
is stored. Looking at the list of players, you see that she’s third in the list, so her
index is 2.

removedPlayer = players.remove(at: 2)
print("\(removedPlayer) was removed")
// > Cindy was removed

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 150

But how would you get the index of an element if you didn’t already know it? There’s
a method for that! firstIndex(of:) returns the first index of the element, because
the array might contain multiple copies of the same value. If the method doesn’t find
the element, it returns nil.

Mini-exercise
Use firstIndex(of:) to determine the position of the element "Dan" in players.

Updating elements
Frank has decided everyone should call him Franklin from now on. You could remove
the value "Frank" from the array and then add "Franklin", but that’s too much
work for a simple task. Instead, you should use the subscript syntax to update the
name.

print(players)
// > ["Alice", "Bob", "Dan", "Eli", "Frank"]
players[4] = "Franklin"
print(players)
// > ["Alice", "Bob", "Dan", "Eli", "Franklin"]

Be careful to not use an index beyond the bounds of the array, or your code will
crash.

As the game continues, some players are eliminated, and new ones come to replace
them. You can also use subscripting with ranges to update multiple values in a single
line of code:

players[0...1] = ["Donna", "Craig", "Brian", "Anna"]
print(players)
// > ["Donna", "Craig", "Brian", "Anna", "Dan", "Eli",
"Franklin"]

This code replaces the first two players, Alice and Bob, with the four players in the
new players array. As you can see, the size of the range doesn’t have to be equal to
the size of the array that holds the values you’re adding.

Moving elements
Take a look at this mess! The players array contains names that start with A to F,
but they aren’t in the correct order, and that violates the rules of the game.

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 151

You can try to fix this situation by moving values one by one to their correct
positions:

let playerAnna = players.remove(at: 3)
players.insert(playerAnna, at: 0)
print(players)
// > ["Anna", "Donna", "Craig", "Brian", "Dan", "Eli",
"Franklin"]

...or by swapping elements, by using swapAt(_:_:):

players.swapAt(1, 3)
print(players)
// > ["Anna", "Brian", "Craig", "Donna", "Dan", "Eli",
"Franklin"]

This works for a few elements, but to sort the entire array, you should use sort():

players.sort()
print(players)
// > ["Anna", "Brian", "Craig", "Dan", "Donna", "Eli",
"Franklin"]

If you’d like to leave the original array untouched and return a sorted copy instead,
use sorted() instead of sort().

Iterating through an array
It’s getting late, so the players decide to stop for the night and continue tomorrow. In
the meantime, you’ll keep their scores in a separate array. You’ll investigate a better
approach for this when you learn about dictionaries, but for now you can continue to
use arrays:

let scores = [2, 2, 8, 6, 1, 2, 1]

Before the players leave, you want to print the names of those still in the game. You
can do this using the for-in loop you read about in Chapter 4, “Advanced Control
Flow”:

for player in players {
 print(player)
}
// > Anna
// > Brian
// > Craig

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 152

// > Dan
// > Donna
// > Eli
// > Franklin

This code goes over all the elements of players, from index 0 up to players.count
- 1 and prints their values. In the first iteration, player is equal to the first element
of the array; in the second iteration, it’s equal to the second element of the array;
and so on, until the loop has printed all the elements in the array.

If you need the index of each element, you can iterate over the return value of the
array’s enumerated() method, which returns tuples with each element’s index and
value:

for (index, player) in players.enumerated() {
 print("\(index + 1). \(player)")
}
// > 1. Anna
// > 2. Brian
// > 3. Craig
// > 4. Dan
// > 5. Donna
// > 6. Eli
// > 7. Franklin

Now you can use the technique you’ve just learned to write a function that takes an
array of integers as its input and returns the sum of its elements:

func sumOfElements(in array: [Int]) -> Int {
 var sum = 0
 for number in array {
 sum += number
 }
 return sum
}

You could use this function to calculate the sum of the players’ scores:

print(sumOfElements(in: scores))
// > 22

Mini-exercise
Write a for-in loop that prints the players’ names and scores.

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 153

Running time for array operations
Arrays are stored as a continuous block in memory. That means if you have ten
elements in an array, the ten values are all stored one next to the other. With that in
mind, here’s the performance cost of various array operations:

Accessing elements: The cost of fetching an element is cheap, meaning that it
happens in a fixed or constant amount of time. Sometimes this is written O(1). Since
all the values are sequential, it’s easy to use random access and fetch a value at a
particular index; all the compiler needs to know is where the array starts and what
index you want to fetch.

Inserting elements: The complexity of adding an element depends on the position
in which you add the new element:

• If you add to the beginning of the array, Swift requires time proportional to the
size of the array because it has to shift all of the elements over by one to make
room. This is called linear time and sometimes written O(n).

• Likewise, if you add to the middle of the array, all values from that index on need
to be shifted over. Doing so will require n/2 operations, therefore the running time
is still linear with the size of the array or O(n).

• If you add to the end of the array using append and there’s room, it will take O(1).
If there isn’t room, Swift will need to make space somewhere else and copy the
entire array over before adding the new element, which will take O(n). The average
case is O(1) though, because arrays are not full most of the time.

Deleting elements: Deleting an element leaves a gap where the removed element
was. All elements in the array have to be sequential, so this gap needs to be closed by
shifting elements forward.

The complexity is similar to inserting elements: If you’re removing an element from
the end, it’s an O(1) operation. Otherwise the complexity is O(n).

Searching for an element: If the element you’re searching for is the first element in
the array, then the search will end after a single operation. If the element doesn’t
exist, you need to perform N operations until you realize that the element is not
found. On average, searching for an element will take n/2 operations, therefore
searching has a complexity of O(n).

As you learn about dictionaries and sets, you’ll see how their performance
characteristics differ from arrays. That could give you a hint on which collection type
to use for your particular case.

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 154

Dictionaries
A dictionary is an unordered collection of pairs, where each pair comprises a key and
a value.

As shown in the diagram below, keys are unique. The same key can’t appear twice in
a dictionary, but different keys may point to the same value. All keys have to be of
the same type, and all values have to be of the same type.

Dictionaries are useful when you want to look up values by means of an identifier.
For example, the table of contents of this book maps chapter names to their page
numbers, making it easy to skip to the chapter you want to read.

How is this different from an array? With an array, you can only fetch a value by its
index, which has to be an integer, and all indexes have to be sequential. In a
dictionary, the keys can be of any type and in no particular order.

Creating dictionaries
The easiest way to create a dictionary is by using a dictionary literal. This is a list of
key-value pairs separated by commas, enclosed in square brackets.

For your card game from earlier, instead of using the two arrays to map players to
their scores, you can use a dictionary literal:

var namesAndScores = ["Anna": 2, "Brian": 2, "Craig": 8,
"Donna": 6]
print(namesAndScores)
// > ["Craig": 8, "Anna": 2, "Donna": 6, "Brian": 2]

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 155

In this example, the type of the dictionary is inferred to be [String: Int]. This
means namesAndScores is a dictionary with strings as keys and integers as values.

When you print the dictionary, you see there’s no particular order to the pairs.
Remember that, unlike arrays, dictionaries are unordered!

The empty dictionary literal looks like this: [:]. You can use that to empty an
existing dictionary like so:

namesAndScores = [:]

...or create a new dictionary, like so:

var pairs: [String: Int] = [:]

The type annotation is required here, as the compiler can’t infer the type of the
dictionary from the empty dictionary literal.

After you create a dictionary, you can define its capacity:

pairs.reserveCapacity(20)

Using reserveCapacity(_:) is an easy way to improve performance when you have
an idea of how much data the dictionary needs to store.

Accessing values
As with arrays, there are several ways to access dictionary values.

Using subscripting
Dictionaries support subscripting to access values. Unlike arrays, you don’t access a
value by its index but rather by its key. For example, if you want to get Anna’s score,
you would type:

namesAndScores = ["Anna": 2, "Brian": 2, "Craig": 8, "Donna": 6]
// Restore the values

print(namesAndScores["Anna"]!) // 2

Notice that the return type is an optional. The dictionary will check if there’s a pair
with the key Anna, and if there is, return its value.

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 156

If the dictionary doesn’t find the key, it will return nil.

namesAndScores["Greg"] // nil

With arrays, out-of-bounds subscript access causes a runtime error, but dictionaries
are different since their results are wrapped in an optional. Subscript access using
optionals is really powerful. You can find out if a specific player is in the game
without having to iterate over all the keys, as you must do when you use an array.

Using properties and methods
Dictionaries, like arrays, conform to Swift’s Collection protocol. Because of that,
they share many of the same properties. For example, both arrays and dictionaries
have isEmpty and count properties:

namesAndScores.isEmpty // false
namesAndScores.count // 4

Note: If you just want to know whether a dictionary has elements or not, it is
always better to use the isEmpty property. A dictionary needs to loop through
all of the values to compute the count. isEmpty, by contrast, always runs in
constant time no matter how many values there are.

Modifying dictionaries
It’s easy enough to create dictionaries and access their contents — but what about
modifying them?

Adding pairs
Bob wants to join the game.

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 157

Take a look at his details before you let him join:

var bobData = [
 "name": "Bob",
 "profession": "Card Player",
 "country": "USA"
]

This dictionary is of type [String: String], and it’s mutable because it’s assigned
to a variable. Imagine you received more information about Bob and you wanted to
add it to the dictionary. This is how you’d do it:

bobData.updateValue("CA", forKey: "state")

There’s even a shorter way to add pairs, using subscripting:

bobData["city"] = "San Francisco"

Bob’s a professional card player. So far, he sounds like a good addition to your roster.

Mini-exercise
Write a function that prints a given player’s city and state.

Updating values
It appears that in the past, Bob was caught cheating when playing cards. He’s not just
a professional — he’s a card shark! He asks you to change his name and profession so
no one will recognize him.

Because Bob seems eager to change his ways, you agree. First, you change his name
from Bob to Bobby:

bobData.updateValue("Bobby", forKey: "name") // Bob

You saw this method above when you read about adding pairs. Why does it return the
string Bob? updateValue(_:forKey:) replaces the value of the given key with the
new value and returns the old value. If the key doesn’t exist, this method will add a
new pair and return nil.

As with adding, you can do this with less code by using subscripting:

bobData["profession"] = "Mailman"

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 158

Like updateValue(_:forKey:), this code updates the value for this key or, if the key
doesn’t exist, creates a new pair.

Removing pairs
Bob — er, sorry — Bobby, still doesn’t feel safe, and he wants you to remove all
information about his whereabouts:

bobData.removeValue(forKey: "state")

This method will remove the key state and its associated value from the dictionary.
As you might expect, there’s a shorter way to do this using subscripting:

bobData["city"] = nil

Assigning nil as a key’s associated value removes the pair from the dictionary.

Note: If you’re using a dictionary that has values that are optional types,
dictionary[key] = nil still removes the key completely. If you want keep
the key and set the value to nil you must use the updateValue method.

Iterating through dictionaries
The for-in loop also works when you want to iterate over a dictionary. But since the
items in a dictionary are pairs, you need to use a tuple:

for (player, score) in namesAndScores {
 print("\(player) - \(score)")
}
// > Craig - 8
// > Anna - 2
// > Donna - 6
// > Brian - 2

It’s also possible to iterate over just the keys:

for player in namesAndScores.keys {
 print("\(player), ", terminator: "") // no newline
}
print("") // print one final newline
// > Craig, Anna, Donna, Brian,

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 159

You can iterate over just the values in the same manner with the values property of
the dictionary.

Running time for dictionary operations
In order to be able to examine how dictionaries work, you need to understand what
hashing is and how it works. Hashing is the process of transforming a value —
String, Int, Double, Bool, etc — to a numeric value, known as the hash value. This
value can then be used to quickly lookup the values in a hash table.

Swift dictionaries have a type requirement for keys. Keys must be Hashable or you
will get a compiler error.

Fortunately, in Swift, all basic types are already Hashable and have a hash value.
This value has to be deterministic — meaning that a given value must always return
the same hash value. No matter how many times you calculate the hash value for
some string, it will always give the same value. You should never save a hash value,
however, because it will be different each time you run your program.

Here’s the performance of various dictionary operations. This great performance
hinges on having a good hashing function that avoids value collisions. If you have a
poor hashing function, all of the operations below degenerate to linear time, or O(n)
performance. Fortunately, the built-in types have great, general purpose Hashable
implementations.

Accessing elements: Getting the value for a key is a constant time operation, or
O(1).

Inserting elements: To insert an element, the dictionary needs to calculate the hash
value of the key then store data based on that hash. These are all O(1) operations.

Deleting elements: Again, the dictionary needs to calculate the hash value to know
exactly where to find the element, and then remove it. This is also an O(1) operation.

Searching for an element: As mentioned above, accessing an element has constant
running time, so the complexity for searching is also O(1).

While all of these running times compare favorably to arrays, remember that you
lose order information when using dictionaries.

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 160

Sets
A set is an unordered collection of unique values of the same type. This can be
extremely useful when you want to ensure that an item doesn’t appear more than
once in your collection, and when the order of your items isn’t important.

There are 4 strings in the Set illustration above. Notice that there’s no order for the
elements.

Creating sets
You can declare a set explicitly by writing Set followed by the type inside angle
brackets:

let setOne: Set<Int> = [1]

Set literals
Sets don’t have their own literals. You use array literals to create a set with initial
values. Consider this example:

let someArray = [1, 2, 3, 1]

This is an array. So how would you use array literals to create a set? Like this:

var explicitSet: Set<Int> = [1, 2, 3, 1]

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 161

You have to explicitly declare the variable as a Set. However, you can let the compiler
infer the element type like so:

var someSet = Set([1, 2, 3, 1])

To see the most important features of a set in action, let’s print the set you just
created:

print(someSet)
// > [2, 3, 1] but the order is not defined

First, you can see there’s no specific ordering. Second, although you created the set
with two instances of the value 1, that value only appears once. Remember, a set’s
values must be unique.

Accessing elements
You can use contains(_:) to check for the existence of a specific element:

print(someSet.contains(1))
// > true
print(someSet.contains(4))
// > false

You can also use the first and last properties, which return one of the elements in
the set. However, because sets are unordered, you won’t know exactly which item
you’ll get.

Adding and removing elements
You can use insert(_:) to add elements to a set. If the element already exists, the
method does nothing.

someSet.insert(5)

You can remove the element from the set like this:

let removedElement = someSet.remove(1)
print(removedElement!)
// > 1

remove(_:) returns the removed element if it’s in the set, or nil otherwise.

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 162

Running time for set operations
Sets have a very similar implementations to those of dictionaries, and they also
require the elements to be hashable. The running time of all the operations is
identical to those of dictionaries.

Key points
Sets

• Are unordered collections of unique values of the same type.

• Are most useful when you need to know whether something is included in the
collection or not.

Dictionaries

• Are unordered collections of key-value pairs.

• The keys are all of the same type, and the values are all of the same type.

• Use subscripting to get values and to add, update or remove pairs.

• If a key is not in a dictionary, lookup returns nil.

• The key of a dictionary must be a type that conforms to the Hashable protocol.

• Basic Swift types such as String, Int, Double are Hashable out of the box.

Arrays:

• Are ordered collections of values of the same type.

• Use subscripting, or one of the many properties and methods, to access and
update elements.

• Be wary of accessing an index that’s out of bounds.

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 163

Challenges
Before moving on, here are some challenges to test your knowledge of arrays,
dictionaries and sets. It is best if you try to solve them yourself, but solutions are
available if you get stuck. These came with the download or are available at the
printed book’s source code link listed in the introduction.

Challenge 1: Which is valid
Which of the following are valid statements?

1. let array1 = [Int]()
2. let array2 = []
3. let array3: [String] = []

For the next five statements, array4 has been declared as:

let array4 = [1, 2, 3]

4. print(array4[0])
5. print(array4[5])
6. array4[1...2]
7. array4[0] = 4
8. array4.append(4)

For the final five statements, array5 has been declared as:

var array5 = [1, 2, 3]

9. array5[0] = array5[1]
10. array5[0...1] = [4, 5]
11. array5[0] = "Six"
12. array5 += 6
13. for item in array5 { print(item) }

Challenge 2: Remove the first number
Write a function that removes the first occurrence of a given integer from an array of
integers. This is the signature of the function:

func removingOnce(_ item: Int, from array: [Int]) -> [Int]

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 164

Challenge 3: Remove the numbers
Write a function that removes all occurrences of a given integer from an array of
integers. This is the signature of the function:

func removing(_ item: Int, from array: [Int]) -> [Int]

Challenge 4: Reverse an array
Arrays have a reversed() method that returns an array holding the same elements
as the original array, in reverse order. Write a function that does the same thing,
without using reversed(). This is the signature of the function:

func reversed(_ array: [Int]) -> [Int]

Challenge 5: Return the middle
Write a function that returns the middle element of an array. When array size is even,
return the first of the two middle elememnts.

func middle(_ array: [Int]) -> Int?

Challenge 6: Find the minimum and maximum
Write a function that calculates the minimum and maximum value in an array of
integers. Calculate these values yourself; don’t use the methods min and max. Return
nil if the given array is empty.

This is the signature of the function:

func minMax(of numbers: [Int]) -> (min: Int, max: Int)?

Challenge 7: Which is valid
Which of the following are valid statements?

1. let dict1: [Int, Int] = [:]
2. let dict2 = [:]
3. let dict3: [Int: Int] = [:]

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 165

For the next four statements, use the following dictionary:

let dict4 = ["One": 1, "Two": 2, "Three": 3]

4. dict4[1]
5. dict4["One"]
6. dict4["Zero"] = 0
7. dict4[0] = "Zero"

For the next three statements, use the following dictionary:

var dict5 = ["NY": "New York", "CA": "California"]

8. dict5["NY"]
9. dict5["WA"] = "Washington"
10. dict5["CA"] = nil

Challenge 8: Long names
Given a dictionary with two-letter state codes as keys, and the full state names as
values, write a function that prints all the states with names longer than eight
characters. For example, for the dictionary ["NY": "New York", "CA":
"California"], the output would be California.

Challenge 9: Merge dictionaries
Write a function that combines two dictionaries into one. If a certain key appears in
both dictionaries, ignore the pair from the first dictionary. This is the function’s
signature:

func merging(_ dict1: [String: String], with dict2: [String:
String]) -> [String: String]

Challenge 10: Count the characters
Declare a function occurrencesOfCharacters that calculates which characters
occur in a string, as well as how often each of these characters occur. Return the
result as a dictionary. This is the function signature:

func occurrencesOfCharacters(in text: String) -> [Character:
Int]

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 166

Hint: String is a collection of characters that you can iterate over with a for
statement.Bonus: To make your code shorter, dictionaries have a special subscript
operator that let you add a default value if it is not found in the dictionary. For
example, dictionary["a", default: 0] creates a 0 entry for the character "a" if it
is not found instead of just returning nil.

Challenge 11: Unique values
Write a function that returns true if all of the values of a dictionary are unique. Use
a set to test uniqueness. This is the function signature:

func isInvertible(_ dictionary: [String: Int]) -> Bool

Challenge 12: Removing keys and setting
values to nil
Given the dictionary:

var nameTitleLookup: [String: String?] = ["Mary": "Engineer",
"Patrick": "Intern", "Ray": "Hacker"]

Set the value of the key "Patrick" to nil and completely remove the key and value
for "Ray".

Swift Apprentice Chapter 7: Arrays, Dictionaries & Sets

raywenderlich.com 167

8Chapter 8: Collection
Iteration with Closures
By Matt Galloway

Earlier, you learned about functions. But Swift has another object you can use to
break up code into reusable chunks: a closure. They become particularly useful when
dealing with collections.

A closure is simply a function with no name; you can assign it to a variable and pass
it around like any other value. This chapter shows you how convenient and useful
closures can be.

raywenderlich.com 168

Closure basics
Closures are so named because they have the ability to “close over” the variables and
constants within the closure’s own scope. This simply means that a closure can
access, store and manipulate the value of any variable or constant from the
surrounding context. Variables and constants used within the body of a closure are
said to have been captured by the closure.

You may ask, “If closures are functions without names, then how do you use them?”
To use a closure, you first have to assign it to a variable or constant.

Here’s a declaration of a variable that can hold a closure:

var multiplyClosure: (Int, Int) -> Int

multiplyClosure takes two Int values and returns an Int. Notice that this is
exactly the same as a variable declaration for a function. Like I said, a closure is
simply a function without a name. The type of a closure is a function type.

In order for the declaration to compile in a playground, you need to provide an initial
definition like so:

var multiplyClosure = { (a: Int, b: Int) -> Int in
 return a * b
}

This looks similar to a function declaration, but there’s a subtle difference. There’s
the same parameter list, -> symbol and return type. But in the case of closures, these
elements appear inside braces, and there is an in keyword after the return type.

With your closure variable defined, you can use it just as if it were a function, like so:

let result = multiplyClosure(4, 2)

As you’d expect, result equals 8. Again, though, there’s a subtle difference.

Notice how the closure has no external names for the parameters. You can’t set them
like you can with functions.

Shorthand syntax
Compared to functions, closures are designed to be lightweight. There are many ways
to shorten their syntax. First, just like normal functions, if the closure consists of a
single return statement, you can leave out the return keyword, like so:

Swift Apprentice Chapter 8: Collection Iteration with Closures

raywenderlich.com 169

multiplyClosure = { (a: Int, b: Int) -> Int in
 a * b
}

Next, you can use Swift’s type inference to shorten the syntax even more by
removing the type information:

multiplyClosure = { (a, b) in
 a * b
}

Remember, you already declared multiplyClosure as a closure taking two Ints and
returning an Int, so you can let Swift infer these types for you.

And finally, you can even omit the parameter list if you want. Swift lets you refer to
each parameter by number, starting at zero, like so:

multiplyClosure = {
 $0 * $1
}

The parameter list, return type and in keyword are all gone, and your new closure
declaration is much shorter than the original. Numbered parameters like this should
really only be used when the closure is short and sweet, like the one above.

If the parameter list is much longer it can be confusing to remember what each
numbered parameter refers to. In these cases you should use the named syntax.

Consider the following code:

func operateOnNumbers(_ a: Int, _ b: Int,
 operation: (Int, Int) -> Int) -> Int {
 let result = operation(a, b)
 print(result)
 return result
}

This declares a function named operateOnNumbers, which takes Int values as its
first two parameters. The third parameter is named operation and is of a function
type. operateOnNumbers itself returns an Int.

You can then use operateOnNumbers with a closure, like so:

let addClosure = { (a: Int, b: Int) in
 a + b
}
operateOnNumbers(4, 2, operation: addClosure)

Swift Apprentice Chapter 8: Collection Iteration with Closures

raywenderlich.com 170

Remember, closures are simply functions without names. So you shouldn’t be
surprised to learn that you can also pass in a function as the third parameter of
operateOnNumbers, like so:

func addFunction(_ a: Int, _ b: Int) -> Int {
 a + b
}
operateOnNumbers(4, 2, operation: addFunction)

operateOnNumbers is called the same way, whether the operation is a function or a
closure.

The power of the closure syntax comes in handy again. You can define the closure
inline with the operateOnNumbers function call, like this:

operateOnNumbers(4, 2, operation: { (a: Int, b: Int) -> Int in
 return a + b
})

There’s no need to define the closure and assign it to a local variable or constant. You
can simply declare the closure right where you pass it into the function as a
parameter!

But recall that you can simplify the closure syntax to remove a lot of the boilerplate
code. You can therefore reduce the above to the following:

operateOnNumbers(4, 2, operation: { $0 + $1 })

In fact, you can even go a step further. The + operator is just a function that takes
two arguments and returns one result so you can write:

operateOnNumbers(4, 2, operation: +)

There’s one more way you can simplify the syntax, but it can only be done when the
closure is the final parameter passed to a function. In this case, you can move the
closure outside of the function call:

operateOnNumbers(4, 2) {
 $0 + $1
}

This may look strange, but it’s just the same as the previous code snippet, except
you’ve removed the operation label and pulled the braces outside of the function
call parameter list. This is called trailing closure syntax.

Swift Apprentice Chapter 8: Collection Iteration with Closures

raywenderlich.com 171

Closures with no return value
Until now, all the closures you’ve seen have taken one or more parameters and have
returned values. But just like functions, closures aren’t required to do these things.
Here’s how you declare a closure that takes no parameters and returns nothing:

let voidClosure: () -> Void = {
 print("Swift Apprentice is awesome!")
}
voidClosure()

The closure’s type is () -> Void. The empty parentheses denote there are no
parameters. You must declare a return type, so Swift knows you’re declaring a
closure. This is where Void comes in handy, and it means exactly what its name
suggests: the closure returns nothing.

Note: Void is actually just a typealias for (). This means you could have
written () -> Void as () -> (). A function’s parameter list however must
always be surrounded by parentheses, so Void -> () or Void -> Void are
invalid.

Capturing from the enclosing scope
Finally, let’s return to the defining characteristic of a closure: it can access the
variables and constants from within its own scope.

Note: Recall that scope defines the range in which an entity (variable,
constant, etc) is accessible. You saw a new scope introduced with if-
statements. Closures also introduce a new scope and inherit all entities visible
to the scope in which it is defined.

For example, take the following closure:

var counter = 0
let incrementCounter = {
 counter += 1
}

incrementCounter is rather simple: It increments the counter variable. The
counter variable is defined outside of the closure. The closure is able to access the

Swift Apprentice Chapter 8: Collection Iteration with Closures

raywenderlich.com 172

variable because the closure is defined in the same scope as the variable. The closure
is said to capture the counter variable. Any changes it makes to the variable are
visible both inside and outside the closure.

Let’s say you call the closure five times, like so:

incrementCounter()
incrementCounter()
incrementCounter()
incrementCounter()
incrementCounter()

After these five calls, counter will equal 5.

The fact that closures can be used to capture variables from the enclosing scope can
be extremely useful. For example, you could write the following function:

func countingClosure() -> () -> Int {
 var counter = 0
 let incrementCounter: () -> Int = {
 counter += 1
 return counter
 }
 return incrementCounter
}

This function takes no parameters and returns a closure. The closure it returns takes
no parameters and returns an Int.

The closure returned from this function will increment its internal counter each time
it is called. Each time you call this function you get a different counter.

For example, this could be used like so:

let counter1 = countingClosure()
let counter2 = countingClosure()

counter1() // 1
counter2() // 1
counter1() // 2
counter1() // 3
counter2() // 2

The two counters created by the function are mutually exclusive and count
independently. Neat!

Swift Apprentice Chapter 8: Collection Iteration with Closures

raywenderlich.com 173

Custom sorting with closures
Closures come in handy when you start looking deeper at collections. In Chapter 7,
you used array’s sort method to sort an array. By specifying a closure, you can
customize how things are sorted. You call sorted() to get a sorted version of the
array as so:

let names = ["ZZZZZZ", "BB", "A", "CCCC", "EEEEE"]
names.sorted()
// ["A", "BB", "CCCC", "EEEEE", "ZZZZZZ"]

By specifying a custom closure, you can change the details of how the array is sorted.
Specify a trailing closure like so:

names.sorted {
 $0.count > $1.count
}
// ["ZZZZZZ", "EEEEE", "CCCC", "BB", "A"]

Now the array is sorted by the length of the string with longer strings coming first.

Iterating over collections with closures
In Swift, collections implement some very handy features often associated with
functional programming. These features come in the shape of functions that you
can apply to a collection to perform an operation on it.

Operations include things like transforming each element or filtering out certain
elements.

All of these functions make use of closures, as you will see now.

The first of these functions lets you loop over the elements in a collection and
perform an operation like so:

let values = [1, 2, 3, 4, 5, 6]
values.forEach {
 print("\($0): \($0*$0)")
}

This loops through each item in the collection printing the value and its square.

Swift Apprentice Chapter 8: Collection Iteration with Closures

raywenderlich.com 174

Another function allows you to filter out certain elements, like so:

var prices = [1.5, 10, 4.99, 2.30, 8.19]

let largePrices = prices.filter {
 $0 > 5
}

Here, you create an array of Double to represent the prices of items in a shop. To
filter out the prices which are greater than $5, you use the filter function. This
function looks like so:

func filter(_ isIncluded: (Element) -> Bool) -> [Element]

This means that filter takes a single parameter, which is a closure (or function)
that takes an Element and returns a Bool. The filter function then returns an array
of Elements. In this context, Element refers to the type of items in the array. In the
example above, Doubles.

The closure’s job is to return true or false depending on whether or not the value
should be kept or not. The array returned from filter will contain all elements for
which the closure returned true.

In your example, largePrices will contain:

(10, 8.19)

Note: The array that is returned from filter (and all of these functions) is a
new array. The original is not modified at all.

If you’re only interested in the first element that satisfies a certain condition, you
can use first(where:). For example, using a trailing closure:

let largePrice = prices.first {
 $0 > 5
}

In this case largePrice would be 10.

However, there is more!

Swift Apprentice Chapter 8: Collection Iteration with Closures

raywenderlich.com 175

Imagine you’re having a sale and want to discount all items to 90% of their original
price. There’s a handy function named map that can achieve this:

let salePrices = prices.map {
 $0 * 0.9
}

The map function will take a closure, execute it on each item in the array and return a
new array containing each result with the order maintained. In this case,
salePrices will contain:

[1.35, 9, 4.491, 2.07, 7.371]

The map function can also be used to change the type. You can do that like so:

let userInput = ["0", "11", "haha", "42"]

let numbers1 = userInput.map {
 Int($0)
}

This takes some strings that the user input and turns them into an array of Int?.
They need to be optional because the conversion from String to Int might fail.

If you want to filter out the invalid (missing) values, you can use compactMap like so:

let numbers2 = userInput.compactMap {
 Int($0)
}

This is almost the same as map except it creates an array of Int and tosses out the
missing values.

Another handy function is called reduce. This function takes a starting value and a
closure. The closure takes two values: the current value and an element from the
array. The closure returns the next value that should be passed into the closure as
the current value parameter.

This could be used with the prices array to calculate the total, like so:

let sum = prices.reduce(0) {
 $0 + $1
}

Swift Apprentice Chapter 8: Collection Iteration with Closures

raywenderlich.com 176

The initial value is 0. Then the closure calculates the sum of the current value plus
the current iteration’s value. Thus you calculate the total of all the values in the
array. In this case, sum will be:

26.98

Now that you’ve seen filter, map and reduce, hopefully you’re realizing how
powerful these functions can be, thanks to the syntax of closures. In just a few lines
of code, you have calculated quite complex values from the collection.

These functions can also be used with dictionaries. Imagine you represent the stock
in your shop by a dictionary mapping the price to number of items at that price. You
could use that to calculate the total value of your stock like so:

let stock = [1.5: 5, 10: 2, 4.99: 20, 2.30: 5, 8.19: 30]
let stockSum = stock.reduce(0) {
 $0 + $1.key * Double($1.value)
}

In this case, the second parameter to the reduce function is a named tuple
containing the key and value from the dictionary elements. A type conversion of the
value is required to perform the calculation.

Here, the result is:

384.5

There’s another form of reduce named reduce(into:_:). You’d use it when the
result you’re reducing a collection into is an array or dictionary, like so:

let farmAnimals = ["# ": 5, "$ ": 10, "% ": 50, "! ": 1]
let allAnimals = farmAnimals.reduce(into: []) {
 (result, this: (key: String, value: Int)) in
 for _ in 0 ..< this.value {
 result.append(this.key)
 }
}

It works in exactly the same way as the other version, except that you don’t return
something from the closure. Instead, each iteration gives you a mutable value. In this
way, there is only ever one array in this example that is created and appended to,

Swift Apprentice Chapter 8: Collection Iteration with Closures

raywenderlich.com 177

making reduce(into:_:) more efficient in some cases.

Should you need to chop up an array, there are a few more functions that can be
helpful. The first function is dropFirst, which works like so:

let removeFirst = prices.dropFirst()
let removeFirstTwo = prices.dropFirst(2)

The dropFirst function takes a single parameter that defaults to 1 and returns an
array with the required number of elements removed from the front. Results are as
follows:

removeFirst = [10, 4.99, 2.30, 8.19]
removeFirstTwo = [4.99, 2.30, 8.19]

Just like dropFirst, there also exists dropLast which removes elements from the
end of the array. It works like this:

let removeLast = prices.dropLast()
let removeLastTwo = prices.dropLast(2)

The results of these are as you would expect:

removeLast = [1.5, 10, 4.99, 2.30]
removeLastTwo = [1.5, 10, 4.99]

You can select just the first or last elements of an array as shown below:

let firstTwo = prices.prefix(2)
let lastTwo = prices.suffix(2)

Here, prefix returns the required number of elements from the front of the array,
and suffix returns the required number of elements from the back of the array. The
results of this function are:

firstTwo = [1.5, 10]
lastTwo = [2.30, 8.19]

And finally, you can remove all elements in a collection by using removeAll()
qualified by a closure, or unconditionally:

prices.removeAll() { $0 > 2 } // prices is now [1.5]
prices.removeAll() // prices is now an empty array

Swift Apprentice Chapter 8: Collection Iteration with Closures

raywenderlich.com 178

Lazy collections
Sometimes you can have a collection that is huge, or perhaps even infinite, but you
want to be able to manipulate it in some way. A concrete example of this would be all
of the prime numbers. That is obviously an infinite set of numbers. So how can you
work with that set? Enter the lazy collection.

Consider that you might want to calculate the first ten prime numbers. To do this in
an imperative way you might do something like this:

func isPrime(_ number: Int) -> Bool {
 if number == 1 { return false }
 if number == 2 || number == 3 { return true }

 for i in 2...Int(Double(number).squareRoot()) {
 if number % i == 0 { return false }
 }

 return true
}

var primes: [Int] = []
var i = 1
while primes.count < 10 {
 if isPrime(i) {
 primes.append(i)
 }
 i += 1
}
primes.forEach { print($0) }

This creates a function which checks if a number is prime or not. Then it uses that to
generate an array of the first ten prime numbers.

Note: The function to calculate if this is a prime is not a very good one! This is
a deep topic and far beyond the scope of this chapter. If you’re curious then I
suggest starting with reading about the Sieve of Eratosthenes.

This works, but functional is better as you saw earlier in the chapter. The functional
way to get the first ten prime numbers would be to have a sequence of all the prime
numbers and then use prefix() to get the first ten. However how can you have a
sequence of infinite length and get the prefix() of that? That’s where you can use
the lazy operation to tell Swift to create the collection on demand when it’s needed.

Swift Apprentice Chapter 8: Collection Iteration with Closures

raywenderlich.com 179

Let’s see it in action. You could rewrite the code above instead like this:

let primes = (1...).lazy
 .filter { isPrime($0) }
 .prefix(10)
primes.forEach { print($0) }

Notice that you start with the completely open ended collection 1... which means 1
until, well, infinity (or rather the maximum integer that the Int type can hold!).
Then you use lazy to tell Swift that you want this to be a lazy collection. Then you
use filter() and prefix() to filter out the primes and choose the first ten.

At that point, the sequence has not been generated at all. No primes have been
checked. It is only on the second statement, the primes.forEach that the sequence
is evaluated and the first ten prime numbers are printed out. Neat! :]

Lazy collections are extremely useful when the collection is huge (even infinite) or
expensive to generate. It saves the computation until precisely when it is needed.

That wraps up collection iteration with closures!

Mini-exercises
1. Create a constant array called names that contains some names as strings. Any

names will do — make sure there’s more than three. Now use reduce to create a
string that is the concatenation of each name in the array.

2. Using the same names array, first filter the array to contain only names that are
longer than four characters, and then create the same concatenation of names as
in the above exercise. (Hint: You can chain these operations together.)

3. Create a constant dictionary called namesAndAges that contains some names as
strings mapped to ages as integers. Now use filter to create a dictionary
containing only people under the age of 18.

4. Using the same namesAndAges dictionary, filter out the adults (those 18 or older)
and then use map to convert to an array containing just the names (i.e. drop the
ages).

Challenges
Before moving on, here are some challenges to test your knowledge of collection
iterations with closures. It is best if you try to solve them yourself, but solutions are

Swift Apprentice Chapter 8: Collection Iteration with Closures

raywenderlich.com 180

available if you get stuck. These came with the download or are available at the
printed book’s source code link listed in the introduction.

Challenge 1: Repeating yourself
Your first challenge is to write a function that will run a given closure a given number
of times.

Declare the function like so:

func repeatTask(times: Int, task: () -> Void)

The function should run the task closure, times number of times. Use this function
to print "Swift Apprentice is a great book!" 10 times.

Challenge 2: Closure sums
In this challenge, you’re going to write a function that you can reuse to create
different mathematical sums.

Declare the function like so:

func mathSum(length: Int, series: (Int) -> Int) -> Int

The first parameter, length, defines the number of values to sum. The second
parameter, series, is a closure that can be used to generate a series of values.
series should have a parameter that is the position of the value in the series and
return the value at that position.

mathSum should calculate length number of values, starting at position 1, and return
their sum.

Use the function to find the sum of the first 10 square numbers, which equals 385.
Then use the function to find the sum of the first 10 Fibonacci numbers, which
equals 143. For the Fibonacci numbers, you can use the function you wrote in the
functions chapter — or grab it from the solutions if you’re unsure your solution is
correct.

Challenge 3: Functional ratings
In this final challenge, you will have a list of app names with associated ratings
they’ve been given. Note — these are all fictional apps! Create the data dictionary
like so:

Swift Apprentice Chapter 8: Collection Iteration with Closures

raywenderlich.com 181

let appRatings = [
 "Calendar Pro": [1, 5, 5, 4, 2, 1, 5, 4],
 "The Messenger": [5, 4, 2, 5, 4, 1, 1, 2],
 "Socialise": [2, 1, 2, 2, 1, 2, 4, 2]
]

First, create a dictionary called averageRatings that will contain a mapping of app
names to average ratings. Use forEach to iterate through the appRatings dictionary,
then use reduce to calculate the average rating. Store this rating in the
averageRatings dictionary. Finally, use filter and map chained together to get a
list of the app names whose average rating is greater than 3.

Key points
• Closures are functions without names. They can be assigned to variables and

passed as parameters to functions.

• Closures have shorthand syntax that makes them a lot easier to use than other
functions.

• A closure can capture the variables and constants from its surrounding context.

• A closure can be used to direct how a collection is sorted.

• A handy set of functions exists on collections that you can use to iterate over a
collection and transform it. Transforms comprise mapping each element to a new
value, filtering out certain values and reducing the collection down to a single
value.

• Lazy collections can be used to evaluate a collection only when strictly needed,
which means you can work with large, expensive or potentially infinite collections
with ease.

Swift Apprentice Chapter 8: Collection Iteration with Closures

raywenderlich.com 182

9Chapter 9: Strings

By Matt Galloway

So far you have briefly seen what the type String has to offer for representing text.
Text is an extremely common data type: people’s names; their addresses; the words
of a book. All of these are examples of text that an app might need to handle. It’s
worth having a deeper understanding of how String works and what it can do.

This chapter deepens your knowledge of strings in general, and more specifically how
strings work in Swift. Swift is one of the few languages that handles Unicode
characters correctly while maintaining maximum predictable performance.

raywenderlich.com 183

Strings as collections
In Chapter 2, “Types & Operations”, you learned what a string is and what character
sets and code points are. To recap, they define the mapping numbers to the character
it represents. And now it’s time to look deeper into the String type.

It’s pretty easy to conceptualize a string as a collection of characters. Because strings
are collections, you can do things like this:

let string = "Matt"
for char in string {
 print(char)
}

This will print out every character of Matt individually. Simple, eh?

You can also use other collection operations, such as:

let stringLength = string.count

This will give you the length of the string.

Now imagine you want to get the fourth character in the string. You may think to do
something like this:

let fourthChar = string[3]

However, if you did this you would receive the following error message:

'subscript' is unavailable: cannot subscript String with an Int,
see the documentation comment for discussion

Why is that? The short answer is because characters do not have a fixed size so can’t
be accessed like an array. Why not? It’s time to take a detour further into how strings
work by introducing what a grapheme cluster is.

Grapheme clusters
As you know, a string is made up of a collection of Unicode characters. Until now, you
have considered one code point to precisely equal one character, and vice versa.
However the term "character" is fairly loose.

Swift Apprentice Chapter 9: Strings

raywenderlich.com 184

It may come as a surprise, but there are two ways to represent some characters. One
example is the é in café, which is an e with an acute accent. You can represent this
character with either one or two characters.

The single character to represent this is code point 233. The two-character case is an
e on its own followed by an acute accent combining character, which is a special
character that modifies the previous character.

So you can represent the e with an acute accent by either of these means:

The combination of these two characters in the second diagram forms what is known
as a grapheme cluster defined by the Unicode standard. When you think of a
character, you’re actually probably thinking of a grapheme cluster. Grapheme
clusters are represented by the Swift type Character.

Another example of combining characters are the special characters used to change
the skin color of certain emojis.

Here, the thumbs up emoji is followed by a skin tone combining character. On
platforms that support it, including iOS and macOS, the rendered emoji is a single
thumbs up character with the skin tone applied.

Let’s now take a look at what this means for strings when they are used as
collections. Consider the following code:

let cafeNormal = "café"
let cafeCombining = "cafe\u{0301}"

cafeNormal.count // 4
cafeCombining.count // 4

Both of these counts turn out to equal 4, because Swift considers a string as a
collection of grapheme clusters. You may also notice that evaluating the length of a
string takes linear time, because you need to go through all characters to determine

Swift Apprentice Chapter 9: Strings

raywenderlich.com 185

how many grapheme clusters there are. One can simply not know, just from looking,
how big the string is in memory.

Note: In the code above, the acute accent combining character is written using
the Unicode shorthand, which is \u followed by the code point in hexadecimal,
in braces. You can use this shorthand to write any Unicode character. I had to
use it here for the combining character because there’s no way to type this
character on my keyboard!

However, you can access to the underlying Unicode code points in the string via the
unicodeScalars view on the string. This view is also a collection itself. So, you can
do the following:

cafeNormal.unicodeScalars.count // 4
cafeCombining.unicodeScalars.count // 5

In this case, you’re seeing the difference in the counts as you’d expect.

You can iterate through this Unicode scalars view like so:

for codePoint in cafeCombining.unicodeScalars {
 print(codePoint.value)
}

This will print the following list of numbers, as expected:

99
97
102
101
769

Indexing strings
As you saw earlier, indexing into a string to get a certain character (err, I mean
grapheme cluster) is not as simple as using an integer subscript. Swift wants you to
be aware of what’s going on under the hood, and so it requires syntax that is a bit
more verbose.

You have to operate on the specific string index type in order to index into strings.
For example, you obtain the index that represents the start of the string like so:

let firstIndex = cafeCombining.startIndex

Swift Apprentice Chapter 9: Strings

raywenderlich.com 186

If you option-click on firstIndex in a playground, you’ll notice that it is of type
String.Index and not an integer.

You can then use this value to obtain the Character (grapheme cluster) at that
index, like so:

let firstChar = cafeCombining[firstIndex]

In this case, firstChar will of course be c. The type of this value is Character which
is a grapheme cluster.

Similarly, you can obtain the last grapheme cluster like so:

let lastIndex = cafeCombining.endIndex
let lastChar = cafeCombining[lastIndex]

But if you do this, you’ll get a fatal error on the console (and a
EXC_BAD_INSTRUCTION error in the code):

Fatal error: String index is out of bounds

This error happens because the endIndex is actually 1 past the end of the string. You
need to do this to obtain the last character:

let lastIndex = cafeCombining.index(before:
cafeCombining.endIndex)
let lastChar = cafeCombining[lastIndex]

Here you’re obtaining the index just before the end index then obtaining the
character at that index. Alternatively, you could offset from the first character like so:

let fourthIndex = cafeCombining.index(cafeCombining.startIndex,
 offsetBy: 3)
let fourthChar = cafeCombining[fourthIndex]

In this case, fourthChar is é as expected.

But as you know, the é in that case is actually made up of multiple code points. You
can access these code points on the Character type in the same way as you can on
String, through the unicodeScalars view. So you can do this:

fourthChar.unicodeScalars.count // 2
fourthChar.unicodeScalars.forEach { codePoint in
 print(codePoint.value)
}

Swift Apprentice Chapter 9: Strings

raywenderlich.com 187

This time you’re using the forEach function to iterate through the Unicode scalars
view. The count is 2 and as expected, the loop prints out:

101
769

Equality with combining characters
Combining characters make equality of strings a little trickier. For example, consider
the word café written once using the single é character, and once using the
combining character, like so:

These two strings are of course logically equal. When they are printed onscreen, they
use the same glyph and look exactly the same. But they are represented inside the
computer in different ways. Many programming languages would consider these
strings to be unequal, because those languages work by comparing the code points
one by one. Swift, however, considers these strings to be equal by default. Let’s see
that in action.

let equal = cafeNormal == cafeCombining

In this case, equal is true, because the two strings are logically the same.

String comparison in Swift uses a technique known as canonicalization. Say that
three times fast! Before checking equality, Swift canonicalizes both strings, which
means they’re converted to use the same special character representation.

It doesn’t matter which way Swift does the canonicalization — using the single
character or using the combining character — as long as both strings get converted to
the same style. Once the canonicalization is complete, Swift can compare individual
characters to check for equality.

Swift Apprentice Chapter 9: Strings

raywenderlich.com 188

The same canonicalization comes into play when considering how many characters
are in a certain string, which you saw earlier where café using the single é character
and café using the e plus combining accent character had the same length.

Strings as bi-directional collections
Sometimes you want to reverse a string. Often this is so you can iterate through it
backwards. Fortunately, Swift has a rather simple way to do this, through a method
called reversed() like so:

let name = "Matt"
let backwardsName = name.reversed()

But what is the type of backwardsName? If you said String, then you would be
wrong. It is actually a ReversedCollection<String>. This is a rather clever
optimization that Swift makes. Instead of it being a concrete String, it is actually a
reversed collection. Think of it as a thin wrapper around any collection that allows
you to use the collection as if it were the other way round, without incurring
additional memory usage.

You can then access every Characterin the backwards string just as you would any
other string, like so:

let secondCharIndex =
backwardsName.index(backwardsName.startIndex,
 offsetBy: 1)
let secondChar = backwardsName[secondCharIndex] // "t"

But what if you actually want a string? Well you can do that by initializing a String
from the reversed collection, like so:

let backwardsNameString = String(backwardsName)

This will create a new String from the reversed collection. But when you do this, you
end up making a reversed copy of the original string with its own memory storage.
Staying in the reversed collection domain will save memory space, which is fine if
you don’t need the whole reversed string.

Swift Apprentice Chapter 9: Strings

raywenderlich.com 189

Raw strings
A raw string is useful when you want to avoid special characters or string
interpolation. Instead, the complete string as you type it is what becomes the string.
To illustrate this, consider the following raw string:

let raw1 = #"Raw "No Escaping" \(no interpolation!). Use all the
\ you want!"#
print(raw1)

To denote a raw string you surround the string in # symbols. This code prints:

Raw "No Escaping" \(no interpolation!). Use all the \ you want!

If you didn’t use the # symbols, this string would try to use interpolation and
wouldn’t compile because "no interpolation!" is not valid Swift. If you want to
include # in your code, you can do that too. You can use any number of # symbols you
want as long as the beginning and end match like so:

let raw2 = ##"Aren’t we "# clever"##
print(raw2)

This prints:

Aren’t we "# clever

What if you want to use interpolation with raw strings. Can you do that?

let can = "can do that too"
let raw3 = #"Yes we \#(can)!"#
print(raw3)

Prints:

Yes we can do that too!

The Swift team seems to have thought of everything with raw strings.

Substrings
Another thing that you often need to do when manipulating strings is to generate
substrings. That is, pull out a part of the string into its own value. This can be done
in Swift using a subscript that takes a range of indices.

Swift Apprentice Chapter 9: Strings

raywenderlich.com 190

For example, consider the following code:

let fullName = "Matt Galloway"
let spaceIndex = fullName.firstIndex(of: " ")!
let firstName = fullName[fullName.startIndex..<spaceIndex] //
"Matt"

This code finds the index that represents the first space (using a force unwrap here
because you know one exists). Then it uses a range to find the grapheme clusters
between the start index and the index of the space (not including the space).

Now is a good time to introduce a new type of range that you haven’t seen before:
the open-ended range. This type of range only takes one index and assumes the
other is either the start or the end of the collection.

That last line of code can be rewritten by using an open-ended range:

let firstName = fullName[..<spaceIndex] // "Matt"

This time we omit the fullName.startIndex and Swift will infer that this is what
you mean.

Similarly, you can also use a one-sided range to start at a certain index and go to the
end of the collection, like so:

let lastName = fullName[fullName.index(after: spaceIndex)...]
// "Galloway"

There’s something interesting to point out with substrings. If you look at their type,
then you will see they are of type String.SubSequence rather than String. This
String.SubSequence is actually just a typealias of Substring, which means that
Substring is the actual type, and String.SubSequence is an alias.

Just like with the reversed string, you can force this Substring into a String by
doing the following:

let lastNameString = String(lastName)

The reason for this extra Substring type is a cunning optimization. A Substring
shares the storage with its parent String that it was sliced from. This means that
when you’re in the process of slicing a string, you use no extra memory. Then, when
you want the substring as a String you explicitly create a new string and the
memory is copied into a new buffer for this new string.

Swift Apprentice Chapter 9: Strings

raywenderlich.com 191

The designers of Swift could have made this copy behavior by default. However, by
having the separate type Substring, Swift makes it very explicit what is happening.
The good news is that String and Substring share almost all of the same
capabilities. You might not even realize which type you are using until you return or
pass your Substring to another function that requires a String. In this case, you
can simply initialize a new String from your Substring explicitly.

Hopefully, it’s clear that Swift is opinionated about strings, and very deliberate in the
way it implements them. It is an important bit of knowledge to carry because strings
are complex beasts and used frequently. Getting the API right is important — that’s
an understatement. :]

Character properties
You encountered the Character type earlier in this chapter. There are some rather
interesting properties of this type which allow you to introspect the character in
question and learn about its semantics.

Let’s take a look at a few of the properties.

The first is simply finding out if the character belongs to the ASCII character set.
You can achieve this like so:

let singleCharacter: Character = "x"
singleCharacter.isASCII

Note: ASCII stands for American Standard Code for Information Interchange.
It is a fixed-width 7-bit code for representing strings developed in the 1960s by
Bell Labs. Because of its history and importance, the standard 8-bit Unicode
encoding (UTF-8) was created as a superset of ASCII. You will learn more
about UTF-8 later in this chapter.

In this case, the result is true because "x" is indeed in the ASCII character set.
However if you did this for something like "& ", which is the "party face" emoji, then

you would get false.
Next up is checking if something is whitespace. This can be useful as whitespace
often has meaning in things like programming languages.

Swift Apprentice Chapter 9: Strings

raywenderlich.com 192

You can achieve this like so:

let space: Character = " "
space.isWhitespace

Again, the result here would be true.

Next up is checking if something is a hexadecimal digit or not. This can be useful if
you are parsing some text and want to know if something is valid hexadecimal or not.
You can achieve this like so:

let hexDigit: Character = "d"
hexDigit.isHexDigit

In this case the result is true, but if you changed it to check "s" then it would be
false.

Finally, a rather powerful property is being able to convert a character to its numeric
value. That might sound simple, say converting the character "5" into the number 5.
However it also works on non-Latin characters. For example:

let thaiNine: Character = "๙"
thaiNine.wholeNumberValue

In this case the result is 9 because that is the Thai character for the number nine.
Neat! :]

This is only scratching the surface of the properties of Character. There are too
many to go through every single one here, however you can read more in the Swift
evolution proposal which added these.

Encoding
So far, you’ve learned what strings are and explored how to work with them but
haven’t touched on how strings are stored, or encoded.

Strings are made up of a collection of Unicode code points. These code points range
from the number 0 up to 1114111 (or 0x10FFFF in hexadecimal). This means that the
maximum number of bits you need to represent a code point is 21.

However, if you are only ever using low code points, such as if your text contains only
Latin characters, then you can get away with using only 8 bits per code point.

Swift Apprentice Chapter 9: Strings

raywenderlich.com 193

Numeric types in most programming languages come in sizes of addressable,
powers-of-2 bits, such as 8-bits, 16-bits and 32-bits. This is because computers are
made of billions of transistors that are either off or on; they just love powers of 2!

When choosing how to store strings, you could choose to store every individual code
point in a 32-bit type, such as UInt32. So your String type would be backed by a
[UInt32] (a UInt32 array). Each of these UInt32s is what is known as a code unit.
However, you would be wasting space because not all those bits are needed,
especially if the string uses only low code points.

This choice of how to store strings is known as the string’s encoding. This particular
scheme described above is known as UTF-32. However, because it has inefficient
memory usage it is very rarely used.

UTF-8
A much more common scheme is called UTF-8. This uses 8-bit code units instead.
One reason for UTF-8’s popularity is because it is fully compatible with the
venerable, English-only, 7-bit ASCII encoding. But how do you store code points that
need more than 8 bits?! Herein lies the magic of the encoding.

If the code point requires up to 7 bits, it is represented by simply one code unit and is
identical to ASCII. But for code points above 7 bits, a scheme comes into play that
uses up to 4 code units to represent the code point.

For code points of 8 to 11 bits, 2 code units are used. The first code unit’s initial 3 bits
are 110. The remaining 5 bits are the first 5 bits of the code point. The second code
unit’s initial 2 bits are 10. The remaining 6 bits are the remaining 6 bits of the code
point.

For example, the code point 0x00BD represents the ½ character. In binary this is
10111101, and uses 8 bits. In UTF-8, this would comprise 2 code units of 11000010
and 10111101.

To illustrate this, consider the following diagram:

Swift Apprentice Chapter 9: Strings

raywenderlich.com 194

Of course, code points higher than 11 bits are also supported. 12- to 16-bit code
points use 3 UTF-8 code units, and 17- to 21-bit code points use 4 UTF-8 code units,
according to the following scheme:

Each x is replaced with the bits from the code points.

In Swift, you can access the UTF-8 string encoding through the utf8 view. For
example, consider the following code:

let char = "\u{00bd}"
for i in char.utf8 {
 print(i)
}

The utf8 view is a collection, just like the unicodeScalars view. Its values are the
UTF-8 code units that make up the string. In this case, it’s a single character, namely
the one that we discussed above.

The above code will print the following:

194
189

If you pull out your calculator (or have a fantastic mental arithmetic mind) then you
can validate that these are 11000010 and 10111101 respectively, as you expected!

Now consider a more complicated example which you’ll refer back to later in this
section. Take the following string:

+½⇨'

And iterate through the UTF-8 code units it contains:

let characters = "+\u{00bd}\u{21e8}\u{1f643}"
for i in characters.utf8 {
 print("\(i) : \(String(i, radix: 2))")
}

Swift Apprentice Chapter 9: Strings

raywenderlich.com 195

This time the print statement will print out both the decimal number and the
number in binary. It prints the following, with newlines added to split grapheme
clusters:

43 : 101011

194 : 11000010
189 : 10111101

226 : 11100010
135 : 10000111
168 : 10101000

240 : 11110000
159 : 10011111
153 : 10011001
131 : 10000011

Feel free to verify that these are indeed correct. Notice that the first character used 1
code unit, the second used 2 code units, and so on.

UTF-8 is therefore much more compact than UTF-32. For this string, you used 10
bytes to store the 4 code points. In UTF-32 this would be 16 bytes (4 bytes per code
unit, 1 code unit per code point, 4 code points).

There is a downside to UTF-8 though. To handle certain string operations you need
to inspect every byte. For example, if you wanted to jump to the n th code point, you
would need to inspect every byte until you have gone past n-1 code points. You
cannot simply jump into the buffer because you don’t know how far you have to
jump.

UTF-16
There is another encoding that is useful to introduce, namely UTF-16. Yes, you
guessed it. It uses 16-bit code units!

This means that code points that are up to 16 bits use 1 code unit. But how are code
points of 17 to 21 bits represented? These use a scheme known as surrogate pairs.
These are 2 UTF-16 code units that, when next to each other, represent a code point
from the range above 16 bits.

There is a space within Unicode reserved for these surrogate pair code points. They
are split into low and high surrogates. The high surrogates range from 0xD800 to
0xDBFF, and the low surrogates range from 0xDC00 to 0xDFFF.

Swift Apprentice Chapter 9: Strings

raywenderlich.com 196

Perhaps that sounds backwards — but the high and low here refers to the bits from
the original code point that are represented by this surrogate.

Take the upside-down face emoji from the string you saw earlier. Its code point is
0x1F643. To find out the surrogate pairs for this code point, you apply the following
algorithm:

1. Subtract 0x10000 to give 0xF643, or 0000 1111 0110 0100 0011 in binary.

2. Split these 20 bits into two. This gives you 0000 1111 01 and 10 0100 0011.

3. Take the first and add 0xD800 to it, to give 0xD83D. This is your high surrogate.

4. Take the second and add 0xDC00 to it, to give 0xDE43. This is your low surrogate.

So in UTF-16, that upside-down face emoji is represented by the code unit 0xD83D
followed by 0xDE43. Neat!

Just as with UTF-8, Swift allows you to access the UTF-16 code units through the
utf16 view, like so:

for i in characters.utf16 {
 print("\(i) : \(String(i, radix: 2))")
}

In this case, the following is printed, again with newlines added to split grapheme
clusters:

43 : 101011

189 : 10111101

8680 : 10000111101000

55357 : 1101100000111101
56899 : 1101111001000011

As you can see, the only code point that needs to use more than one code unit is the
last one, which is your upside-down face emoji. As expected, the values are correct!

So with UTF-16, your string this time uses 10 bytes (5 code units, 2 bytes per code
unit), which is the same as UTF-8. However, the memory usage with UTF-8 and
UTF-16 is often different. For example, strings comprised of code points of 7 bits or
less will take up twice the space in UTF-16 than they would in UTF-8.

Swift Apprentice Chapter 9: Strings

raywenderlich.com 197

For a string made up of code points 7 bits or less, the string has to be entirely made
up of those Latin characters contained in that range. Even the “£” sign is not in this
range! So often the memory usage of UTF-16 and UTF-8 are comparable.

Swift string views make the String type encoding agnostic — Swift is one of the only
languages that does this. Internally it actually uses UTF-16 because it hits a sweet
spot between memory usage and complexity of operations.

Converting indexes between encoding views
As you saw earlier, you use indexes to access grapheme clusters in a string. For
example, using the same string from above, you can do the following:

let arrowIndex = characters.firstIndex(of: "\u{21e8}")!
characters[arrowIndex] // ⇨

Here, arrowIndex is of type String.Index and used to obtain the Character at that
index.

You can convert this index into the index relating to the start of this grapheme
cluster in the unicodeScalars, utf8 and utf16 views. You do that using the
samePosition(in:) method on String.Index, like so:

if let unicodeScalarsIndex = arrowIndex.samePosition(in:
characters.unicodeScalars) {
 characters.unicodeScalars[unicodeScalarsIndex] // 8680
}

if let utf8Index = arrowIndex.samePosition(in: characters.utf8)
{
 characters.utf8[utf8Index] // 226
}

if let utf16Index = arrowIndex.samePosition(in:
characters.utf16) {
 characters.utf16[utf16Index] // 8680
}

unicodeScalarsIndex is of type String.UnicodeScalarView.Index. This
grapheme cluster is represented by only one code point, so in the unicodeScalars
view, the scalar returned is the one and only code point. If the Character were made
up of two code points, such as e combined with ´ as you saw earlier, the scalar
returned in the code above would be just the “e”.

Swift Apprentice Chapter 9: Strings

raywenderlich.com 198

Likewise, utf8Index is of type String.UTF8View.Index and the value at that index
is the first UTF-8 code unit used to represent this code point. The same goes for the
utf16Index, which is of type String.UTF16View.Index.

Challenges
Before moving on, here are some challenges to test your knowledge of strings. It is
best if you try to solve them yourself, but solutions are available if you get stuck.
These came with the download or are available at the printed book’s source code link
listed in the introduction.

Challenge 1: Character count
Write a function that takes a string and prints out the count of each character in the
string.

For bonus points, print them ordered by the count of each character.

For bonus-bonus points, print it as a nice histogram.

Hint: You could use # characters to draw the bars.

Challenge 2: Word count
Write a function that tells you how many words there are in a string. Do it without
splitting the string.

Hint: try iterating through the string yourself.

Challenge 3: Name formatter
Write a function that takes a string which looks like "Galloway, Matt" and returns one
which looks like "Matt Galloway", i.e., the string goes from "<LAST_NAME>,
<FIRST_NAME>" to "<FIRST_NAME> <LAST_NAME>".

Swift Apprentice Chapter 9: Strings

raywenderlich.com 199

Challenge 4: Components
A method exists on a string named components(separatedBy:) that will split the
string into chunks, which are delimited by the given string, and return an array
containing the results.

Your challenge is to implement this yourself.

Hint: There exists a view on String named indices that lets you iterate through all
the indices (of type String.Index) in the string. You will need to use this.

Challenge 5: Word reverser
Write a function which takes a string and returns a version of it with each individual
word reversed.

For example, if the string is “My dog is called Rover” then the resulting string would
be "yM god si dellac revoR".

Try to do it by iterating through the indices of the string until you find a space, and
then reversing what was before it. Build up the result string by continually doing that
as you iterate through the string.

Hint: You’ll need to do a similar thing as you did for Challenge 4 but reverse the word
each time. Try to explain to yourself, or the closest unsuspecting family member, why
this is better in terms of memory usage than using the function you created in the
previous challenge.

Key points
• Strings are collections of Character types.

• A Character is grapheme cluster and is made up of one or more code points.

• A combining character is a character that alters the previous character in some
way.

• You use special (non-integer) indexes to subscript into the string to a certain
grapheme cluster.

• Swift’s use of canonicalization ensures that the comparison of strings accounts
for combining characters.

Swift Apprentice Chapter 9: Strings

raywenderlich.com 200

• Slicing a string yields a substring with type Substring, which shares storage with
its parent String.

• You can convert from a Substring to a String by initializing a new String and
passing the Substring.

• Swift String has a view called unicodeScalars, which is itself a collection of the
individual Unicode code points that make up the string.

• There are multiple ways to encode a string. UTF-8 and UTF-16 are the most
popular.

• The individual parts of an encoding are called code units. UTF-8 uses 8-bit code
units, and UTF-16 uses 16-bit code units.

• Swift’s String has views called utf8 and utf16that are collections which allow
you to obtain the individual code units in the given encoding.

Swift Apprentice Chapter 9: Strings

raywenderlich.com 201

Section III: Building Your Own
Types

You can create your own type by combining variables and functions into a new type
definition. For example, integers and doubles might not be enough for your purposes,
so you might need to create a type to store complex numbers. Or maybe storing first,
middle and last names in three independent variables is getting difficult to manage,
so you decide to create a FullName type.

When you create a new type, you give it a name; thus, these custom types are known
as named types. Structures are a powerful tool for modeling real world concepts.
You can encapsulate related concepts, properties and methods into a single, cohesive
model.

• Chapter 10, Structures

• Chapter 11, Properties

• Chapter 12, Methods

Swift, in fact, includes four kinds of named types: structures, classes, enumerations
and protocols. Now that you understand how structures work with methods and
properties, you can see how the other named types use these same concepts, how
they differ, and where you want to use each.

• Chapter 13, Classes

• Chapter 14, Advanced Classes

• Chapter 15, Enumerations

• Chapter 16, Protocols

Finally, you expand your knowledge of the type system by learning about generics:
types and methods that take as input other types instead of just methods. Swift’s key
to safety, speed and expressiveness lies in the ability to utilize generic types.

raywenderlich.com 202

• Chapter 17, Generics

Custom types make it possible to build large and complex things with the basic
building blocks you’ve learned so far. It’s time to take your Swift apprenticeship to
the next level!

Swift Apprentice Section III: Building Your Own Types

raywenderlich.com 203

10Chapter 10: Structures

By Ben Morrow

You’ve covered some fundamental building blocks of Swift. With variables,
conditionals, strings, functions and collections, you’re ready to conquer the world!
Well, almost.

Most programs that perform complex tasks benefit from higher levels of abstraction.
In addition to an Int, String or Array, most programs use new types specific to the
domain of the task at hand. Keeping track of photos or contacts, for example,
demands more than the simple types you’ve seen so far.

This chapter introduces structures, which are the first named type you’ll learn
about. Structures are types that can store named properties and define their own
behaviors. Like a String, Int or Array, you can define your own structures to create
named types to use in your code. By the end of this chapter, you’ll know how to
define and use your own structures.

You’ll begin your adventure into custom types with pizza.

raywenderlich.com 204

Introducing structures
Imagine you live in a town called Pizzaville. As you might expect, Pizzaville is known
for its amazing pizza. You own the most popular (and fastest!) pizza delivery
restaurant in Pizzaville — “Swift Pizza”.

As the owner of a single restaurant, you have a limited delivery area. You want to
write a program that calculates if a potential customer is within range for your
delivery drivers. The first version of your program might look something like this:

let restaurantLocation = (2, 4)
let restaurantRange = 2.5

// Pythagorean Theorem ()
func distance(from source: (x: Int, y: Int),
 to target: (x: Int, y: Int)) -> Double {
 let distanceX = Double(source.x - target.x)
 let distanceY = Double(source.y - target.y)
 return (distanceX * distanceX +
 distanceY * distanceY).squareRoot()
}

func isInDeliveryRange(location: (x: Int, y: Int)) -> Bool {
 let deliveryDistance = distance(from: location,

Swift Apprentice Chapter 10: Structures

raywenderlich.com 205

 to: restaurantLocation)
 return deliveryDistance < restaurantRange
}

Simple enough, right? distance(from:to:) will calculate how far away you are
from your pizza. isInDeliveryRange(location:) will return true only if you’re not
too far away.

A successful pizza delivery business may eventually expand to include multiple
locations, which adds a minor twist to the deliverable calculator. Replace your
existing code with the following:

let restaurantLocation = (2, 4)
let restaurantRange = 2.5

let otherRestaurantLocation = (7, 8)
let otherRestaurantRange = 1.5

// Pythagorean Theorem ()
func distance(from source: (x: Int, y: Int),
 to target: (x: Int, y: Int)) -> Double {
 let distanceX = Double(source.x - target.x)
 let distanceY = Double(source.y - target.y)
 return (distanceX * distanceX +
 distanceY * distanceY).squareRoot()
}

func isInDeliveryRange(location: (x: Int, y: Int)) -> Bool {
 let deliveryDistance =
 distance(from: location, to: restaurantLocation)

Swift Apprentice Chapter 10: Structures

raywenderlich.com 206

 let secondDeliveryDistance =
 distance(from: location, to: otherRestaurantLocation)

 return deliveryDistance < restaurantRange ||
 secondDeliveryDistance < otherRestaurantRange
}

isInDeliveryRange(location:) checks both locations to see if you can get your
pizza from either one.

Eventually, the rising number of customers will force the business to expand, and
soon it might grow to a total of 10 stores! Then what? Do you keep updating your
function to check against all these sets of coordinates and ranges?

You might briefly consider creating an array of x/y coordinate tuples to keep track of
your pizza restaurants, but that would be both difficult to read and maintain.
Fortunately, Swift has additional tools to help you simplify the problem.

Your first structure
Structures are one of the named types in Swift that allow you to encapsulate related
properties and behaviors. You can declare a new type, give it a name, and then use it
in your code.

In the example of the pizza business, you’ve been using x/y coordinate tuples to
represent locations.

Swift Apprentice Chapter 10: Structures

raywenderlich.com 207

As a first example of structures, promote locations from tuples to a structure type:

struct Location {
 let x: Int
 let y: Int
}

This block of code demonstrates the basic syntax for defining a structure. In this
case, the code declares a type named Location that combines both x and y
coordinates.

The basic syntax begins with the struct keyword followed by the name of the type
and a pair of curly braces. Everything between the curly braces is a member of the
struct.

In Location, both members, x and y, are properties. Properties are constants or
variables that are declared as part of a type. Every instance of the type will have
these properties. This means that in our example, every Location will have both an x
and a y property.

You can instantiate a structure and store it in a constant or variable just like any
other type you’ve worked with:

let storeLocation = Location(x: 2, y: 4)

To create the Location value, you use the name of the type along with a parameter
list in parentheses. This parameter list provides a way to specify the values for the
properties x and y. This is an example of an initializer.

Initializers enforce that all properties are set before you start using them. This is one
of the key safety features of Swift. Accidentally using uninitialized variables is a big
source of bugs in other languages. Another handy Swift feature is that you don’t need
to declare this initializer in the Location type. Swift automatically provides
initializers for structures with all the properties in the parameter list. You’ll learn a
lot more about initializers in Chapter 12, “Methods.”

You may remember that there’s also a range involved, and now that the pizza
business is expanding, there may be different ranges associated with different
restaurants. You can create another struct to represent the delivery area of a
restaurant, like so:

struct DeliveryArea {
 let center: Location
 var radius: Double
}

Swift Apprentice Chapter 10: Structures

raywenderlich.com 208

var storeArea = DeliveryArea(center: storeLocation, radius: 4)

Now there’s a new structure named DeliveryArea that contains a constant center
property along with a variable radius property. As you can see, you can have a
structure value inside a structure value; here, you use the Location type as the type
of the center property of the DeliveryArea struct.

Mini-exercise
Write a structure that represents a pizza order. Include toppings, size and any other
option you’d want for a pizza.

Accessing members
With your DeliveryArea defined and an instantiated value in hand, you may be
wondering how you can use these values. Just as you have been doing with Strings,
Arrays, and Dictionaries, you use dot syntax to access members:

print(storeArea.radius) // 4.0

You can even access members of members using dot syntax:

print(storeArea.center.x) // 2

Similar to how you can read values with dot syntax, you can also assign them. If the
delivery radius of one pizza location becomes larger, you could assign the new value
to the existing property:

storeArea.radius = 250

Defining a property as constant or variable determines if you can change it. In this
case, you can assign to radius because you declared it with var. On the other hand,
you declared center with let, so you can’t modify it.

Your DeliveryArea struct allows a pizza restaurant’s delivery range to be changed,
but not its location!

In addition to choosing whether your properties should be variable or constants, you
must also declare the structure itself as a variable if you want to be able to modify it
after it is initialized:

Swift Apprentice Chapter 10: Structures

raywenderlich.com 209

let fixedArea = DeliveryArea(center: storeLocation, radius: 4)

// Error: Cannot assign to property
fixedArea.radius = 250

Even though radius was declared with var, the enclosing type fixedArea is
constant so can’t be changed. The compiler correctly emits an error. Change
fixedArea from a let constant to a var variable to make it mutable.

Now you’ve learned how to control the mutability of the properties in your structure.

Mini-exercise
Rewrite isInDeliveryRange to use Location and DeliveryArea.

Introducing methods
Using some of the capabilities of structures, you could now make a pizza delivery
range calculator that looks something like this:

let areas = [
 DeliveryArea(center: Location(x: 2, y: 4), radius: 2.5),
 DeliveryArea(center: Location(x: 9, y: 7), radius: 4.5)
]

func isInDeliveryRange(_ location: Location) -> Bool {
 for area in areas {
 let distanceToStore =
 distance(from: (area.center.x, area.center.y),
 to: (location.x, location.y))

 if distanceToStore < area.radius {
 return true
 }
 }
 return false
}

let customerLocation1 = Location(x: 8, y: 1)
let customerLocation2 = Location(x: 5, y: 5)

print(isInDeliveryRange(customerLocation1)) // false
print(isInDeliveryRange(customerLocation2)) // true

In this example, there’s an array, areas, and a function that uses that array to
determine if a customer’s location is within any of these areas.

Swift Apprentice Chapter 10: Structures

raywenderlich.com 210

Being in range is something you want to know about a particular restaurant. It’d be
great if DeliveryArea could tell you if the restaurant could deliver to a location.

Much like a structure can have constants and variables, it can also define its own
functions. In your playground, locate the implementation of DeliveryArea. Just
before the closing curly brace, add the following code:

func contains(_ location: Location) -> Bool {
 let distanceFromCenter =
 distance(from: (center.x, center.y),
 to: (location.x, location.y))

 return distanceFromCenter < radius
}

This code defines a function contains, which is now a member of DeliveryArea.
Functions that are members of types are called methods. Notice how contains uses
the center and radius properties of the current location. This implicit access to
properties and other members inside the structure makes methods different from
regular functions. You’ll learn more about methods in Chapter 12.

Just like other members of structures, you can use dot syntax to access a method:

let area = DeliveryArea(center: Location(x: 5, y: 5), radius:
4.5)
let customerLocation = Location(x: 2, y: 2)
area.contains(customerLocation) // true

Mini-exercises
1. Change distance(from:to:) to use Location as your parameters instead of x-y

tuples.

2. Change contains(_:) to call the new distance(from:to:) with Location.

3. Add a method overlaps(with:) on DeliveryArea that can tell you if the area
overlaps with another area.

Structures as values
The term value has an important meaning when it comes to structures in Swift, and
that’s because structures create what are known as value types.

A value type is a type whose instances are copied on assignment.

Swift Apprentice Chapter 10: Structures

raywenderlich.com 211

var a = 5
var b = a
print(a) // 5
print(b) // 5

a = 10
print(a) // 10
print(b) // 5

This copy-on-assignment behavior means that when a is assigned to b, the value of
a is copied into b. That’s why it’s important to read = as “assign”, not “is equal
to” (you use == to calculate equality).

How about the same principle, except with the DeliveryArea struct:

var area1 = DeliveryArea(center: Location(x: 2, y: 4), radius:
2.5)
var area2 = area1
print(area1.radius) // 2.5
print(area2.radius) // 2.5

area1.radius = 4
print(area1.radius) // 4.0
print(area2.radius) // 2.5

As with the previous example, area2.radius didn’t pick up the new value set in
area1.radius. The disconnection demonstrates the value semantics of working
with structures. When you assign area2 the value of area1, it gets an exact copy of
this value. area1 and area2 are still completely independent! Thanks to value
semantics and copying, structures are safe, so you’ll never need to worry about values
being shared and possibly being changed behind your back by another piece of code.

Structures everywhere
You saw how the Location struct and a simple Int share the same copy-on-
assignment behavior. They share the behavior because they are both value types, and
both have value semantics.

You know structures represent values, so what exactly is an Int then? If you were to
look at the definition of Int in the Swift library, you might be a bit surprised:

public struct Int : FixedWidthInteger, SignedInteger {
 // …
}

Swift Apprentice Chapter 10: Structures

raywenderlich.com 212

The Int type is also a structure. In fact, many of the standard Swift types are defined
as structures, such as: Double, String, Bool, Array and Dictionary. As you’ll learn
in future chapters, the value semantics of structs provide many other advantages
over their reference type counterparts that make them ideal for representing core
Swift types.

Conforming to a protocol
You may have noticed some unfamiliar parts to the Int definition from the Swift
standard library above. The types FixedWidthInteger and SignedInteger appear
right after the declaration of Int:

public struct Int : FixedWidthInteger, SignedInteger {
 // …
}

These types are known as protocols. By putting them after a colon when Int is
declared, you are declaring that Int conforms to these protocols.

Protocols contain a set of requirements that conforming types must satisfy. A simple
example from the standard library is CustomStringConvertible:

public protocol CustomStringConvertible {
 /// A textual representation of this instance.
 public var description: String { get }
}

This protocol contains one property requirement: description. The documentation
refers to description as “A textual representation of this instance.”

If you were to modify DeliveryArea to conform to CustomStringConvertible, you
would be required to add a description property with a “textual representation” of
the instance. Try this now. Change DeliveryArea to:

struct DeliveryArea: CustomStringConvertible {
 let center: Location
 var radius: Double
 var description: String {
 """
 Area with center: (x: \(center.x), y: \(center.y)),
 radius: \(radius)
 """
 }

 func contains(_ location: Location) -> Bool {

Swift Apprentice Chapter 10: Structures

raywenderlich.com 213

 distance(from: center, to: location) < radius
 }

 func overlaps(with area: DeliveryArea) -> Bool {
 distance(from: center, to: area.center) <=
 (radius + area.radius)
 }
}

The value of the description property contains the center and current radius. A
value that updates in response to changes elsewhere is called a computed property.

You’ll learn all about computed properties — and more — in the next chapter!

So what exactly does conforming to a protocol do? Because any type conforming to
CustomStringConvertible must define description, so you can call description
on any instance of any type that conforms to CustomStringConvertible. The Swift
standard library takes advantage of this with the print() function. That function
will use description in the console instead of a rather noisy default description:

print(area1) // Area with center: (x: 2, y: 4), radius: 4.0
print(area2) // Area with center: (x: 2, y: 4), radius: 2.5

Any named type can use protocols to extend its behavior. In this case, you conformed
your structure to a protocol defined in the Swift standard library. In Chapter 16,
“Protocols”, you’ll learn more about defining, using and conforming to protocols.

Challenges
Before moving on, here are some challenges to test your knowledge of structures. It
is best if you try to solve them yourself, but solutions are available if you get stuck.
These came with the download or are available at the printed book’s source code link
listed in the introduction.

Challenge 1: Fruit tree farm
Imagine you’re at a fruit tree farm and you grow different kinds of fruits: pears,
apples, and oranges. After the fruits are picked, a truck brings them in to be
processed at the central facility. Since the fruits are all mixed together on the truck,
the workers in the central facility have to sort them into the correct inventory
container one-by-one.

Swift Apprentice Chapter 10: Structures

raywenderlich.com 214

Implement an algorithm that receives a truck full of different kinds of fruits and
places each fruit into the correct inventory container.

Keep track of the total weight of fruit processed by the facility and print out how
many of each fruit are in the inventory.

Challenge 2: A T-shirt model
Create a T-shirt structure that has size, color and material options. Provide methods
to calculate the cost of a shirt based on its attributes.

Challenge 3: Battleship
Write the engine for a Battleship-like game. If you aren’t familiar with Battleship, see
here: http://bit.ly/2nT3JBU

• Use an (x, y) coordinate system for your locations and model using a structure.

• Ships should also be modeled with structures. Record an origin, direction and
length.

• Each ship should be able to report if a “shot” has resulted in a “hit”.

Key points
• Structures are named types you can define and use in your code.

• Structures are value types, which means their values are copied on assignment.

• You use dot syntax to access the members of named types such as structures.

• Named types can have their own variables and functions, which are called
properties and methods.

• Conforming to a protocol requires implementing the properties and methods
required by that protocol.

Swift Apprentice Chapter 10: Structures

raywenderlich.com 215

11Chapter 11: Properties

By Ben Morrow

In the last chapter, you learned that structures make you a more efficient
programmer by grouping related properties and behaviors into structured types.

In the example below, the Car structure has two properties; both are constants that
store String values:

struct Car {
 let make: String
 let color: String
}

Values like these are called properties. The two properties of Car are both stored
properties, which means they store actual string values for each instance of Car.
Some properties calculate values rather than store them.

In other words, there’s no actual memory allocated for them, rather they get
calculated on-the-fly each time you access them. Naturally, these are called
computed properties.

In this chapter, you’ll learn about both kinds of properties. You’ll also learn some
other neat tricks for working with properties, such as how to monitor changes in a
property’s value and delay initialization of a stored property.

raywenderlich.com 216

Stored properties
As you may have guessed from the example in the introduction, you’re already
familiar with many of the features of stored properties.

To review, imagine you’re building an address book. The common unit you’ll need is
a Contact.

struct Contact {
 var fullName: String
 var emailAddress: String
}

You can use this structure over and over again, letting you build an array of contacts,
each with a different value. The properties you want to store are an individual’s full
name and email address.

These are the properties of the Contact structure. You provide a data type for each
one but opt not to assign a default value, because you plan to assign the value upon
initialization. After all, the values will be different for each instance of Contact.

Remember that Swift automatically creates an initializer for you based on the
properties you defined in your structure:

var person = Contact(fullName: "Grace Murray",
 emailAddress: "grace@navy.mil")

You can access the individual properties using dot notation:

let name = person.fullName // Grace Murray
let email = person.emailAddress // grace@navy.mil

Swift Apprentice Chapter 11: Properties

raywenderlich.com 217

You can assign values to properties as long as they’re defined as variables, and the
parent instance is stored in a variable. When Grace married, she changed her last
name:

person.fullName = "Grace Hopper"
let grace = person.fullName // Grace Hopper

If you’d like to prevent a value from changing, you can define a property as a
constant using let, like so:

struct Contact {
 var fullName: String
 let emailAddress: String
}

// Error: cannot assign to a constant
person.emailAddress = "grace@gmail.com"

Once you’ve initialized an instance of this structure, you can’t change
emailAddress.

Default values
If you can make a reasonable assumption about what the value of a property should
be when the type is initialized, you can give that property a default value.

It doesn’t make sense to create a default name or email address for a contact, but
imagine you add a new property relationship to indicate what kind of contact it is:

struct Contact {
 var fullName: String
 let emailAddress: String
 var relationship = "Friend"
}

By assigning a value in the definition of relationship, you give this property a
default value. Any contact created will automatically be a friend, unless you change
the value of relationship to something like “Work” or “Family”.

Swift will notice which properties you have defaulted, and create the member-wise
inititalizer with parameters also defaulted so you don’t need to specify them unless
you want to.

var person = Contact(fullName: "Grace Murray",
 emailAddress: "grace@navy.mil")
person.relationship // friend

Swift Apprentice Chapter 11: Properties

raywenderlich.com 218

var boss = Contact(fullName: "Ray Wenderlich",
 emailAddress: "ray@raywenderlich.com",
 relationship: "Boss")

You can choose to specify the relationship if you want to, otherwise it takes on the
value "Friend".

Computed properties
Stored properties are certainly the most common, but there are also properties that
are computed, which simply means they perform a calculation before returning a
value.

While a stored property can be a constant or a variable, a computed property must be
defined as a variable.

Computed properties must also include a type, because the compiler needs to know
what to expect as a return value.

The measurement for a TV is the perfect use case for a computed property. The
industry definition of the screen size of a TV isn’t the screen’s height or width, but
its diagonal measurement:

struct TV {
 var height: Double
 var width: Double

 // 1
 var diagonal: Int {
 // 2
 let result = (height * height +
 width * width).squareRoot().rounded()
 // 3
 return Int(result)
 }
}

Swift Apprentice Chapter 11: Properties

raywenderlich.com 219

Let’s go through this code one step at a time:

1. You use an Int type for your diagonal property. Although height and width are
each a Double, TV sizes are usually advertised as nice, round numbers such as 50"
rather than 49.52". Instead of the usual assignment operator = to assign a value
as you would for a stored property, you use curly braces to enclose your computed
property’s calculation.

2. As you’ve seen before in this book, geometry can be handy; once you have the
width and height, you can use the Pythagorean theorem to calculate the length of
the diagonal. You use the rounded method to round the value with the standard
rule: If it the decimal is 0.5 or above, it rounds up; otherwise, it rounds down.

3. Now that you’ve got a properly rounded number, you return it as an Int. Had you
converted result directly to Int without rounding first, the result would have
been truncated, so 109.99 would have become 109.

Computed properties don’t store any values; they return values based on
calculations. From outside of the structure, a computed property can be accessed just
like a stored property.

Test this with the TV size calculation:

var tv = TV(height: 53.93, width: 95.87)
let size = tv.diagonal // 110

You have a 110-inch TV. Let’s say you decide you don’t like the standard movie
aspect ratio and would instead prefer a square screen. You cut off some of the screen
width to make it equivalent to the height:

tv.width = tv.height
let diagonal = tv.diagonal // 76

Now you only have a 76-inch square screen. The computed property automatically
provides the new value based on the new width.

Mini-exercise
Do you have a television or a computer monitor? Measure the height and width, plug
it into a TV struct, and see if the diagonal measurement matches what you think it is.

Swift Apprentice Chapter 11: Properties

raywenderlich.com 220

Getter and setter
The computed property you wrote in the previous section is a called a read-only
computed property. It has a block of code to compute the value of the property,
called the getter.

It’s also possible to create a read-write computed property with two blocks of
code: a getter and a setter.

This setter works differently than you might expect.

As the computed property has no place to store a value, the setter usually sets one or
more related stored properties indirectly:

var diagonal: Int {
 // 1
 get {
 // 2
 let result = (height * height +
 width * width).squareRoot().rounded()
 return Int(result)
 }
 set {
 // 3
 let ratioWidth = 16.0
 let ratioHeight = 9.0
 // 4
 let ratioDiagonal = (ratioWidth * ratioWidth +
 ratioHeight * ratioHeight).squareRoot()
 height = Double(newValue) * ratioHeight / ratioDiagonal
 width = height * ratioWidth / ratioHeight
 }
}

Here’s what’s happening in this code:

1. Because you want to include a setter, you now have to be explicit about which
calculations comprise the getter and which the setter, so you surround each code
block with curly braces and precede it with either get or set. This specificity isn’t
required for read-only computed properties, as their single code block is
implicitly a getter.

2. You use the same code as before to get the computed value.

3. For a setter, you usually have to make some kind of assumption. In this case, you
provide a reasonable default value for the screen ratio.

Swift Apprentice Chapter 11: Properties

raywenderlich.com 221

4. The formulas to calculate a height and width, given a diagonal and a ratio, are a
bit deep. You could work them out with a bit of time, but I’ve done the dirty work
for you and provided them here. The important parts to focus on are:

• The newValue constant lets you use whatever value was passed in during the
assignment.

• Remember, the newValue is an Int, so to use it in a calculation with a Double, you
must first convert it to a Double.

• Once you’ve done the calculations, you assign the height and width properties of
the TV structure.

Now, in addition to setting the height and width directly, you can set them indirectly
by setting the diagonal computed property. When you set this value, your setter will
calculate and store the height and width.

Notice that there’s no return statement in a setter — it only modifies the other
stored properties. With the setter in place, you have a nice little screen size
calculator:

tv.diagonal = 70
let height = tv.height // 34.32...
let width = tv.width // 61.01...

Now you can finally figure out the biggest TV you can cram into your cabinet —
you’re so welcome. :]

Type properties
In the previous section, you learned how to associate stored and computed
properties with instances of a particular type. The properties on your instance of TV
are separate from the properties on my instance of TV.

However, the type itself may also need properties that are common across all
instances. These properties are called type properties.

Imagine you’re building a game with many levels. Each level has a few attributes, or
stored properties:

struct Level {
 let id: Int
 var boss: String
 var unlocked: Bool

Swift Apprentice Chapter 11: Properties

raywenderlich.com 222

}

let level1 = Level(id: 1, boss: "Chameleon", unlocked: true)
let level2 = Level(id: 2, boss: "Squid", unlocked: false)
let level3 = Level(id: 3, boss: "Chupacabra", unlocked: false)
let level4 = Level(id: 4, boss: "Yeti", unlocked: false)

You can use a type property to store the game’s progress as the player unlocks each
level. A type property is declared with the modifier static:

struct Level {
 static var highestLevel = 1
 let id: Int
 var boss: String
 var unlocked: Bool
}

Here, highestLevel is a property on Level itself rather than on the instances. That
means you don’t access this property on an instance:

// Error: you can’t access a type property on an instance
let highestLevel = level3.highestLevel

Instead, you access it on the type itself:

let highestLevel = Level.highestLevel // 1

Using a type property means you can retrieve the same stored property value from
anywhere in the code for your app or algorithm. The game’s progress is accessible
from any level or any other place in the game, like the main menu.

Property observers
For your Level implementation, it would be useful to automatically set the
highestLevel when the player unlocks a new one. For that, you’ll need a way to

Swift Apprentice Chapter 11: Properties

raywenderlich.com 223

listen to property changes. Thankfully, there are a couple of property observers that
get called before and after property changes.

A willSet observer is called when a property is about to be changed while a didSet
observer is called after a property has been changed. Their syntax is similar to
getters and setters:

struct Level {
 static var highestLevel = 1
 let id: Int
 var boss: String
 var unlocked: Bool {
 didSet {
 if unlocked && id > Self.highestLevel {
 Self.highestLevel = id
 }
 }
 }
}

Now, when the player unlocks a new level, it will update the highestLevel type
property if the level is a new high. There are a couple of things to note here:

• You can access the value of unlocked from inside the didSet observer. Remember
that didSet gets called after the value has been set.

• Even though you’re inside an instance of the type, you still have to access type
properties with the type name prefix. You are required to use the full name
Level.highestLevel rather than just highestLevel alone to indicate you’re
accessing a type property. You can also refer to the static property from within the
type as Self.highestLevel. This is preferred because even if you change the
name of the type to something else, say, GameLevel, the code would still work.

willSet and didSet observers are only available for stored properties. If you want to
listen for changes to a computed property, simply add the relevant code to the
property’s setter.

Also, keep in mind that the willSet and didSet observers are not called when a
property is set during initialization; they only get called when you assign a new value
to a fully-initialized instance. That means property observers are only useful for
variable properties since constant properties are only set during initialization. Select
between var and let accordingly to match your needs.

Swift Apprentice Chapter 11: Properties

raywenderlich.com 224

Limiting a variable
You can also use property observers to limit the value of a variable. Say you had a
light bulb that could only support a maximum current flowing through its filament.

struct LightBulb {
 static let maxCurrent = 40
 var current = 0 {
 didSet {
 if current > LightBulb.maxCurrent {
 print("""
 Current is too high,
 falling back to previous setting.
 """)
 current = oldValue
 }
 }
 }
}

In this example, if the current flowing into the bulb exceeds the maximum value, it
will revert to its last successful value. Notice there’s a helpful oldValue constant
available in didSet so you can access the previous value.

Give it a try:

var light = LightBulb()
light.current = 50
var current = light.current // 0
light.current = 40
current = light.current // 40

You try to set the light bulb to 50 amps, but the bulb rejected that input. Pretty cool!

Note: Do not confuse property observers with getters and setters. A stored
property can have a didSet and/or a willSet observer. A computed property
has a getter and optionally a setter. These, even though the syntax is similar,
are entirely different concepts!

Mini-exercise
In the light bulb example, the bulb goes back to a successful setting if the current
gets too high. In real life, that wouldn’t work. The bulb would burn out!

Swift Apprentice Chapter 11: Properties

raywenderlich.com 225

Your task is to rewrite the structure so that the bulb turns off before the current
burns it out.

Hint: You’ll need to use the willSet observer that gets called before value is
changed. The value that is about to be set is available in the constant newValue. The
trick is that you can’t change this newValue, and it will still be set, so you’ll have to
go beyond adding a willSet observer. :]

Lazy properties
If you have a property that might take some time to calculate, you don’t want to slow
things down until you actually need the property. Say hello to the lazy stored
property. It is useful for such things as downloading a user’s profile picture or
making a serious calculation.

Look at this example of a Circle structure that uses pi in its circumference
calculation:

struct Circle {
 lazy var pi = {
 ((4.0 * atan(1.0 / 5.0)) - atan(1.0 / 239.0)) * 4.0
 }()
 var radius = 0.0
 var circumference: Double {
 mutating get {
 pi * radius * 2
 }
 }
 init(radius: Double) {
 self.radius = radius
 }
}

Here, you’re not trusting the value of pi available to you from the standard library;
you want to calculate it yourself.

Swift Apprentice Chapter 11: Properties

raywenderlich.com 226

You can create a new Circle with its initializer, and the pi calculation won’t run yet:

var circle = Circle(radius: 5) // got a circle, pi has not been
run

The calculation of pi waits patiently until you need it. Only when you ask for the
circumference property is pi calculated and assigned a value.

let circumference = circle.circumference // 31.42
// also, pi now has a value

Since you’ve got eagle eyes, you’ve noticed that pi uses a { }() pattern to calculate
its value, even though it’s a stored property. The trailing parentheses execute the
code inside the closure curly braces immediately. But since pi is marked as lazy, this
calculation is postponed until the first time you access the property.

For comparison, circumference is a computed property and therefore is calculated
every time it’s accessed. You expect the circumference’s value to change if the radius
changes. pi, as a lazy stored property, is only calculated the first time. That’s great,
because who wants to calculate the same thing over and over again?

The lazy property must be a variable, defined with var, instead of a constant defined
with let. When you first initialize the structure, the property effectively has no
value. Then when some part of your code requests the property, its value will be
calculated. So even though the value only changes once, you still use var.

Here are two more advanced features of the code:

• Since the value of pi changes, the circumference getter must be marked as
mutating. Accessing the value of pi changes the value of the structure.

• Since pi is a stored property of the structure, you need a custom initializer to use
only the radius. Remember the automatic initializer of a structure includes all of
the stored properties.

Don’t worry about those advanced features too much for now. You’ll learn more
about both the mutating keyword and custom initializers in the next chapter. The
important part to wrap your mind around is the how the lazy stored property works.
The rest of the details are window dressing that you’ll get more comfortable with in
time.

Swift Apprentice Chapter 11: Properties

raywenderlich.com 227

Mini-exercises
Of course, you should definitely trust the value of pi from the standard library. It’s a
type property, and you can access it as Double.pi. Given the Circle example above:

1. Remove the lazy stored property pi. Use the value of pi from the Swift standard
library instead.

2. Remove the initializer. Since radius is the only stored property now, you can rely
on the automatically included initializer.

Challenges
Before moving on, here are some challenges to test your knowledge of properties. It
is best if you try to solve them yourself, but solutions are available if you get stuck.
These came with the download or are available at the printed book’s source code link
listed in the introduction.

Challenge 1: Ice Cream
Rewrite the IceCream structure below to use default values and lazy initialization:

struct IceCream {
 let name: String
 let ingredients: [String]
}

1. Use default values for the properties.

2. Lazily initialize the ingredients array.

Challenge 2: Car and Fuel Tank
At the beginning of the chapter, you saw a Car structure. Dive into the inner
workings of the car and rewrite the FuelTank structure below with property observer
functionality:

struct FuelTank {
 var level: Double // decimal percentage between 0 and 1
}

Swift Apprentice Chapter 11: Properties

raywenderlich.com 228

1. Add a lowFuel stored property of Boolean type to the structure.

2. Flip the lowFuel Boolean when the level drops below 10%.

3. Ensure that when the tank fills back up, the lowFuel warning will turn off.

4. Set the level to a minimum of 0 or a maximum of 1 if it gets set above or below
the expected values.

5. Add a FuelTank property to Car.

Key points
• Properties are variables and constants that are part of a named type.

• Stored properties allocate memory to store a value.

• Computed properties are calculated each time your code requests them and
aren’t stored as a value in memory.

• The static modifier marks a type property that’s universal to all instances of a
particular type.

• The lazy modifier prevents a value of a stored property from being calculated until
your code uses it for the first time. You’ll want to use lazy initialization when a
property’s initial value is computationally intensive or when you won’t know the
initial value of a property until after you’ve initialized the object.

Swift Apprentice Chapter 11: Properties

raywenderlich.com 229

12Chapter 12: Methods

By Ben Morrow

In the previous chapter, you learned about properties, which are constants and
variables that are part of structures. Methods, as you’ve already seen, are merely
functions that reside inside a structure.

In this chapter, you’ll take a closer look at methods and initializers. As with
properties, you’ll begin to design more complex structures. The things you learn in
this chapter will apply to methods across all named types, including classes and
enumerations, which you’ll see in later chapters.

raywenderlich.com 230

Method refresher
Remember Array.removeLast()? It pops the last item off an instance of an array:

var numbers = [1, 2, 3]
numbers.removeLast()
numbers // [1, 2]

Methods like removeLast() help you control the data in the structure.

Comparing methods to computed properties
With computed properties, you saw in the last chapter that you could run code from
inside a structure. That sounds a lot like a method. What’s the difference? It really
comes down to a matter of style, but there are a few helpful thoughts to help you
decide. Properties hold values that you can get and set, while methods perform work.
Sometimes this distinction gets fuzzy when a method’s sole purpose is to return a
single value.

Swift Apprentice Chapter 12: Methods

raywenderlich.com 231

Ask yourself whether you want to be able to set a value as well as get the value. A
computed property can have a setter component inside to write values. Another
question to consider is whether the calculation requires extensive computation or
reads from a database. Even for a simple value, a method helps you indicate to future
developers that the call is expensive in time and computational resources. If the call
is cheap (as in constant time O(1)), stick with a computed property.

Turning a function into a method
To explore methods and initializers, you will create a simple model for dates called
SimpleDate. Be aware that Apple’s Foundation library contains a robust,
production-ready Date class that correctly handles all of the subtle intricacies of
dealing with dates and times.

In the code below, how could you convert monthsUntilWinterBreak(date:) into a
method?

let months = ["January", "February", "March",
 "April", "May", "June",
 "July", "August", "September",
 "October", "November", "December"]

struct SimpleDate {
 var month: String
}

func monthsUntilWinterBreak(from date: SimpleDate) -> Int {
 months.firstIndex(of: "December")! -
 months.firstIndex(of: date.month)!
}

Note: This example is fragile because it force unwraps an index that might not
be valid. You would not want to do this in production code. Also, if you live in
the southern hemisphere, you might be disappointed with the result. Dealing
with time is hard. :]

Making a method is as easy as moving the function inside the structure definition:

struct SimpleDate {
 var month: String

 func monthsUntilWinterBreak(from date: SimpleDate) -> Int {
 months.firstIndex(of: "December")! -
 months.firstIndex(of: date.month)!

Swift Apprentice Chapter 12: Methods

raywenderlich.com 232

 }
}

There’s no identifying keyword for a method; it really is just a function inside a
named type. You call methods on an instance using dot syntax just as you do for
properties:

let date = SimpleDate(month: "October")
date.monthsUntilWinterBreak(from: date) // 2

And just like properties, as soon as you start typing a method name, Xcode will
provide suggestions. You can select one with the Up and Down arrow keys on your
keyboard, and you can autocomplete the call by pressing Tab:

If you think about this code for a minute, you’ll realize that the method’s definition
is awkward. There must be an alternative for accessing content stored by the instance
instead of passing the instance itself as a parameter to the method. It would be so
much nicer to call this:

date.monthsUntilWinterBreak() // Error!

Introducing self
You already Self (spelled with an uppercase S) in the last chapter as a way to access
static properties from inside a struct. Now we look at lowercase self. A structure
definition is like a blueprint, whereas an instance is a real object. To access the value
of an instance, you use the keyword self inside the structure. The Swift compiler
passes it into your method as a secret parameter. The method definition transforms
into this:

// 1
func monthsUntilWinterBreak() -> Int {
 // 2
 months.firstIndex(of: "December")! -
 months.firstIndex(of: self.month)!
}

Swift Apprentice Chapter 12: Methods

raywenderlich.com 233

Here’s what changed:

1. Now there’s no parameter in the method definition.

2. In the implementation, self replaces the old parameter name.

You can now call the method without passing a parameter:

date.monthsUntilWinterBreak() // 2

That’s looking a lot cleaner! One more thing you can do to simplify the code is to
remove self.:

self is your reference to the instance, but most of the time you don’t need to use it
because Swift understands your intent if you just use a variable name. While you can
always use self to access the properties and methods of the current instance, most
of the time you don’t need to. In monthsUntilWinterBreak(), you can just say
month instead of self.month:

months.firstIndex(of: "December")! - months.firstIndex(of:
month)!

Most programmers use self only when it is required, for example, to disambiguate
between a local variable and a property with the same name. You’ll get more practice
using self a little later.

Mini-exercise
Since monthsUntilWinterBreak() returns a single value and there’s not much
calculation involved, transform the method into a computed property with a getter
component.

Swift Apprentice Chapter 12: Methods

raywenderlich.com 234

Introducing initializers
You learned about initializers in the previous chapters, but let’s look at them again
with your newfound knowledge of methods.

Initializers are special methods you call to create a new instance. They omit the func
keyword and even a name. Instead, they use init. An initializer can have parameters,
but it doesn’t have to.

Right now, when you create a new instance of the SimpleDate structure, you have to
specify a value for the month property:

let date = SimpleDate(month: "January")

You might find it more efficient to have a handy no-parameter initializer. An empty
initializer would create a new SimpleDate instance with a reasonable default value:

let date = SimpleDate() // Error!

While the compiler gives you an error now, you can provide the no-parameter
initializer.

By implementing init, you can create the most straightforward path to initialization
with default values.

struct SimpleDate {
 var month: String

 init() {
 month = "January"
 }

 func monthsUntilWinterBreak() -> Int {
 months.firstIndex(of: "December")! -
 months.firstIndex(of: month)!
 }
}

Here’s what’s happening in that code:

1. The init() definition requires neither the func keyword nor a name. You always
use the name of the type to call an initializer.

2. Like a function, an initializer must have a parameter list, even if it is empty.

3. In the initializer, you assign values for all the stored properties of a structure.

Swift Apprentice Chapter 12: Methods

raywenderlich.com 235

4. An initializer never returns a value. Its task is solely to initialize a new instance.

Now you can use your simple initializer to create an instance:

let date = SimpleDate()
date.month // January
date.monthsUntilWinterBreak() // 11

You can test a change to the value in the initializer:

init() {
 month = "March"
}

The value of monthsUntilWinterBreak() will change accordingly:

let date = SimpleDate()
date.month // March
date.monthsUntilWinterBreak() // 9

As you think about the implementation here, a good user experience optimization
would have the initializer use a default value based on today’s date.

In the future, you’ll be capable of retrieving the current date. Eventually, you’ll use
the Date class from the Foundation library to work with dates.

Before you get carried away with all the power that these libraries provide, let’s
continue implementing your own SimpleDate type from the ground up.

Initializers in structures
Initializers ensure all properties are set before the instance is ready to use:

struct SimpleDate {
 var month: String
 var day: Int

 init() {
 month = "January"
 day = 1
 }

 func monthsUntilWinterBreak() -> Int {
 months.firstIndex(of: "December")! -
 months.firstIndex(of: month)!
 }
}

Swift Apprentice Chapter 12: Methods

raywenderlich.com 236

If you tried to create an initializer without setting the day property, then the
compiler would complain.

By creating even one custom initializer, you forgo the option to use the automatic
memberwise initializer. Recall that the auto-generated memberwise initializer
accepts all the properties in order as parameters, such as init(month:day:), for the
SimpleDate structure. When you write a custom initializer, the compiler scraps the
one created automatically.

So this code won’t work right now:

let valentinesDay = SimpleDate(month: "February",
 day: 14) // Error!

Instead, you’ll have to define your own initializer with parameters:

init(month: String, day: Int) {
 self.month = month
 self.day = day
}

In that code, you assign the incoming parameters to the properties of the structure.
Notice how self is used to tell the compiler that you’re referring to the property
rather than the local parameter.

self wasn’t necessary in the simple initializer:

init() {
 month = "January"
 day = 1
}

In that code, there aren’t any parameters with the same names as the properties.
Therefore, self isn’t necessary for the compiler to understand you’re referring to
properties.

With the complex initializer in place, you can call the new initializer the same way
you used to call the automatically generated initializer:

let valentinesDay = SimpleDate(month: "February", day: 14)
valentinesDay.month // February
valentinesDay.day // 14

Swift Apprentice Chapter 12: Methods

raywenderlich.com 237

Default values and initializers
As you might expect, there is a more straightforward way to achieve a no-parameter
initializer or empty initializer.

When you set default values for properties, the automatic memberwise initializer
will take the default values into account.

In your structure, remove both initializers and then add default values for month and
day:

struct SimpleDate {
 // 1
 var month = "January"
 var day = 1

 //2

 func monthsUntilWinterBreak() -> Int {
 months.firstIndex(of: "December")! -
 months.firstIndex(of: month)!
 }
}

Here’s what’s happening in that code:

1. Both properties now have an assignment with a reasonable default value: January
1st.

2. Both initializers, init() and init(month:day:) have been removed. ...Look ma’,
no initializers!

Swift Apprentice Chapter 12: Methods

raywenderlich.com 238

Even though the initalizers are gone, you can still use both initializer styles:

let newYearsDay = SimpleDate()
newYearsDay.month // January
newYearsDay.day // 1

let valentinesDay = SimpleDate(month: "February", day: 14)
valentinesDay.month // February
valentinesDay.day // 14

What’s happening is that the automatic memberwise initializer is available since you
didn’t declare any custom initializers. It provides init(month:day) for you since
those parameters are the properties. However, it is also smart enough to realize that
the properties have default values when they are declared, and therefore do not need
to be passed into the initializer. So that is how you get init() as well. What’s cool is
that you can also mix and match, passing only the properties that you care to set:

let octoberFirst = SimpleDate(month: "October")
octoberFirst.month // October
octoberFirst.day // 1

let januaryTwentySecond = SimpleDate(day: 22)
januaryTwentySecond.month // January
januaryTwentySecond.day // 22

In that code, you only passed the month into the first instance and only the day into
the second instance. Pretty slick, eh!

Introducing mutating methods
Methods in structures cannot change the values of the instance without being
marked as mutating. You can imagine a method in the SimpleDate structure that
advances to the next day:

mutating func advance() {
 day += 1
}

Note: The implementation above is a naive way of writing advance() because
it doesn’t account for what happens at the end of a month. In a challenge at
the end of this chapter, you’ll create a more robust version.

Swift Apprentice Chapter 12: Methods

raywenderlich.com 239

The mutating keyword marks a method that changes a structure’s value. Since a
structure is a value type, the system copies it each time it’s passed around an app. If
a method changes the value of one of the properties, then the original instance and
the copied instance will no longer be equivalent.

By marking a method as mutating, you’re also telling the Swift compiler this method
must not be called on constants. This is how Swift knows which methods to allow
and which to reject at compile time. If you call a mutating method on a constant
instance of a structure, the compiler will flag it as an error that must be corrected
before you can run your program.

For mutating methods, Swift secretly passes in self just like it did for normal
methods. But for mutating methods, the secret self gets marked as an inout
parameter. Whatever happens inside the mutating method will impact everything
that relies on the type externally.

Type methods
Like type properties, you can use type methods to access data across all instances.
You call type methods on the type itself, instead of on an instance. To define a type
method, you prefix it with the static modifier.

Type methods are useful for things that are about a type in general, rather than
something about specific instances.

For example, you could use type methods to group similar methods into a structure:

struct Math {
 // 1
 static func factorial(of number: Int) -> Int {
 // 2
 (1...number).reduce(1, *)
 }
}
// 3
Math.factorial(of: 6) // 720

You might have custom calculations for things such as factorial. Instead of having a
bunch of free-standing functions, you can group related functions together as type
methods in a structure. The structure is said to act as a namespace.

Swift Apprentice Chapter 12: Methods

raywenderlich.com 240

Here’s what’s happening:

1. You use static to declare the type method, which accepts an integer and returns
an integer.

2. The implementation uses a higher-order function called reduce(_:_:). It
effectively follows the formula for calculating a factorial: “The product of all the
whole numbers from 1 to n”. You could write this using a for loop, but the
higher-order function expresses your intent in a cleaner way.

3. You call the type method on Math, rather than on an instance of the type.

Type methods gathered into a structure will advantageously code complete in Xcode.
In this example, you can see all the math utility methods available to you by typing
Math..

Mini-exercise
Add a type method to the Math structure that calculates the n-th triangle number. It
will be very similar to the factorial formula, except instead of multiplying the
numbers, you add them.

Swift Apprentice Chapter 12: Methods

raywenderlich.com 241

Adding to an existing structure with
extensions
Sometimes you want to add functionality to a structure but don’t want to muddy up
the original definition. And sometimes you can’t add the functionality because you
don’t have access to the source code. It is possible to open an existing structure (even
one you do not have the source code for) and add methods, initializers and computed
properties to it. This can be useful for code organization and is discussed in greater
detail in Chapter 18, “Access Control and Code Organization”. Doing so is as easy as
using the keyword, extension.

At the bottom of your playground, outside the definition of Math, add this type
method named primeFactors(of:) using an extension:

extension Math {
 static func primeFactors(of value: Int) -> [Int] {
 // 1
 var remainingValue = value
 // 2
 var testFactor = 2
 var primes: [Int] = []
 // 3
 while testFactor * testFactor <= remainingValue {
 if remainingValue % testFactor == 0 {
 primes.append(testFactor)
 remainingValue /= testFactor
 }
 else {
 testFactor += 1
 }
 }
 if remainingValue > 1 {
 primes.append(remainingValue)
 }
 return primes
 }
}

This method finds the prime factors for a given number. For example, 81 returns [3,
3, 3, 3]. Here’s what’s happening in the code:

1. The value passed in as a parameter is assigned to the mutable variable,
remainingValue so that it can be changed as the calculation runs.

2. The testFactor starts as two and will be divided into remainingValue.

Swift Apprentice Chapter 12: Methods

raywenderlich.com 242

3. The logic runs a loop until the remainingValue is exhausted. If it evenly divides,
meaning there’s no remainder, that value of the testFactor is set aside as a
prime factor. If it doesn’t evenly divide, testFactor is incremented for the next
loop.

This algorithm is brute force, but does contain one optimization: the square of the
testFactor should never be larger than the remainingValue. If it is, the
remainingValue itself must be prime and it is added to the primes list.

You’ve now added a method to Math without changing its original definition. Verify
that the extension works with this code:

Math.primeFactors(of: 81) // [3, 3, 3, 3]

Pretty slick! You’re about to see how that can be powerful in practice.

Note: In an extension, you cannot add stored properties to an existing
structure because that would change the size and memory layout of the
structure and break existing code.

Keeping the compiler-generated initializer
using extensions
With the SimpleDate structure, you saw that once you added your own init(), the
compiler-generated memberwise initializer disappeared. It turns out that you can
keep both if you add your init() to an extension to SimpleDate:

struct SimpleDate {
 var month = "January"
 var day = 1

 func monthsUntilWinterBreak() -> Int {
 months.firstIndex(of: "December")! -
 months.firstIndex(of: month)!
 }

 mutating func advance() {
 day += 1
 }
}

extension SimpleDate {
 init(month: Int, day: Int) {
 self.month = months[month-1]

Swift Apprentice Chapter 12: Methods

raywenderlich.com 243

 self.day = day
 }
}

init(month:day:) gets added to SimpleDate without sacrificing the automatically
generated memberwise initializer. Hooray!

Challenges
Before moving on, here are some challenges to test your knowledge of methods. It is
best if you try to solve them yourself, but solutions are available if you get stuck.
These came with the download or are available at the printed book’s source code link
listed in the introduction.

Challenge 1: Grow a Circle
Given the Circle structure below:

struct Circle {

 var radius = 0.0

 var area: Double {
 .pi * radius * radius
 }

 init(radius: Double) {
 self.radius = radius
 }
}

Write a method that can change an instance’s area by a growth factor. For example, if
you call circle.grow(byFactor: 3), the area of the instance will triple.

Hint: Add a setter to area.

Challenge 2: A more advanced advance()
Here is a naïve way of writing advance() for the SimpleDate structure you saw
earlier in the chapter:

let months = ["January", "February", "March",
 "April", "May", "June",
 "July", "August", "September",

Swift Apprentice Chapter 12: Methods

raywenderlich.com 244

 "October", "November", "December"]

struct SimpleDate {
 var month: String
 var day: Int

 mutating func advance() {
 day += 1
 }
}

var date = SimpleDate(month: "December", day: 31)
date.advance()
date.month // December; should be January!
date.day // 32; should be 1!

What happens when the function should go from the end of one month to the start
of the next? Rewrite advance() to account for advancing from December 31st to
January 1st.

Challenge 3: Odd and Even Math
Add type methods named isEven and isOdd to your Math namespace that return
true if a number is even or odd respectively.

Challenge 4: Odd and Even Int
It turns out that Int is simply a struct. Add the computed properties isEven and
isOdd to Int using an extension.

Note: Generally, you want to be careful about what functionality you add to
standard library types as it can cause confusion for readers.

Challenge 5: Prime Factors
Add the method primeFactors() to Int. Since this is an expensive operation, this is
best left as an actual method.

Swift Apprentice Chapter 12: Methods

raywenderlich.com 245

Key points
• Methods are functions associated with a type.

• Methods are the behaviors that define the functionality of a type.

• A method can access the data of an instance by using the keyword self.

• Initializers create new instances of a type. They look a lot like methods that are
called init with no return value.

• A type method adds behavior to a type instead of the instances of that type. To
define a type method, you prefix it with the static modifier.

• You can open an existing structure and add methods, initializers and computed
properties to it by using an extension.

• By adding your own initializers in extensions, you can keep the compiler’s
member-wise initializer for a structure.

• Methods can exist in all the named types — structures, classes and enumerations.

Swift Apprentice Chapter 12: Methods

raywenderlich.com 246

13Chapter 13: Classes

By Cosmin Pupăză

Structures introduced you to named types. In this chapter, you’ll get acquainted with
classes, which are much like structures — they are named types with properties and
methods.

You’ll learn classes are reference types, as opposed to value types, and have
substantially different capabilities and benefits than their structure counterparts.
While you’ll often use structures in your apps to represent values, you’ll generally
use classes to represent objects.

What does values vs objects really mean, though?

raywenderlich.com 247

Creating classes
Consider the following class definition in Swift:

class Person {
 var firstName: String
 var lastName: String

 init(firstName: String, lastName: String) {
 self.firstName = firstName
 self.lastName = lastName
 }

 var fullName: String {
 "\(firstName) \(lastName)"
 }
}

let john = Person(firstName: "Johnny", lastName: "Appleseed")

That’s simple enough! It may surprise you that the definition is almost identical to
its struct counterpart. The keyword class is followed by the name of the class, and
everything in the curly braces is a member of that class.

But you can also see some differences between a class and a struct: The class above
defines an initializer that sets both firstName and lastName to initial values. Unlike
a struct, a class doesn’t provide a memberwise initializer automatically — which
means you must provide it yourself if you need it. If you forget to provide an
initializer, the Swift compiler will flag that as an error:

Default initialization aside, the initialization rules for classes and structs are very
similar. Class initializers are functions marked init, and all stored properties must
be assigned initial values before the end of init.

There is much more to class initialization, but you’ll have to wait until Chapter 14,
“Advanced Classes”, which will introduce the concept of inheritance and its effect
on initialization rules. This chapter will stick with basic class initializers, so that you
can get comfortable with classes in Swift.

Swift Apprentice Chapter 13: Classes

raywenderlich.com 248

Reference types
In Swift, an instance of a structure is an immutable value whereas an instance of a
class is a mutable object. Classes are reference types, so a variable of a class type
doesn’t store an actual instance — it stores a reference to a location in memory that
stores the instance.

If you created a SimplePerson class instance with only a name like this:

class SimplePerson {
 let name: String
 init(name: String) {
 self.name = name
 }
}

var var1 = SimplePerson(name: "John")

It would look something like this in memory:

If you were to create a new variable var2 and assign to it the value of var1:

var var2 = var1

Then the references inside both var1 and var2 would reference the same place in
memory:

Conversely, a structure as a value type stores the actual value, providing direct access
to it. Replace the SimplePerson class implementation with a struct like this:

struct SimplePerson {
 let name: String
}

Swift Apprentice Chapter 13: Classes

raywenderlich.com 249

In memory, the variable would not reference a place in memory but the value would
instead belong to var1 exclusively:

The assignment var var2 = var1 would copy the value of var1 in this case:

Value types and reference types each have their own distinct advantages — and
disadvantages. Later in the chapter, you’ll consider the question of which type to use
in a given situation. For now, let’s examine how classes and structs work under the
hood.

The heap vs. the stack
When you create a reference type such as class, the system stores the actual instance
in a region of memory known as the heap. Instances of a value type such as a struct
resides in a region of memory called the stack, unless the value is part of a class
instance, in which case the value is stored on the heap with the rest of the class
instance.

Both the heap and the stack have essential roles in the execution of any program. A
general understanding of what they are and how they work will help you visualize
the functional differences between a class and a structure:

• The system uses the stack to store anything on the immediate thread of
execution; it’s tightly managed and optimized by the CPU. When a function
creates a variable, the stack stores that variable and then destroys it when the
function exits. Since the stack is so strictly organized, it’s very efficient, and thus
quite fast.

• The system uses the heap to store instances of reference types. The heap is
generally a large pool of memory from which the system can request and
dynamically allocate blocks of memory. Lifetime is flexible and dynamic.

Swift Apprentice Chapter 13: Classes

raywenderlich.com 250

The heap doesn’t automatically destroy its data like the stack does; additional work
is required to do that. This makes creating and removing data on the heap a slower
process, compared to on the stack.

Maybe you’ve already figured out how this relates to structs and classes. Take a look
at the diagram below:

• When you create an instance of a class, your code requests a block of memory on
the heap to store the instance itself; that’s the first name and last name inside the
instance on the right side of the diagram. It stores the address of that memory in
your named variable on the stack; that’s the reference stored on the left side of the
diagram.

• When you create an instance of a struct (that is not part of an instance of a class),
the instance itself is stored on the stack, and the heap is never involved.

You’ve now been introduced to the dynamics of heaps and stacks, which is just
enough to understand the reference semantics you’ll use with classes, but not
enough to claim expertise in the subject. :]

Working with references
In Chapter 10, “Structures”, you saw the copy semantics involved when working with
structures and other value types. Here’s a little reminder, using the Location and
DeliveryArea structures from that chapter:

struct Location {
 let x: Int
 let y: Int
}

struct DeliveryArea {
 var range: Double
 let center: Location

Swift Apprentice Chapter 13: Classes

raywenderlich.com 251

}

var area1 = DeliveryArea(range: 2.5,
 center: Location(x: 2, y: 4))
var area2 = area1
print(area1.range) // 2.5
print(area2.range) // 2.5

area1.range = 4
print(area1.range) // 4.0
print(area2.range) // 2.5

When you assign the value of area1 into area2, area2 receives a copy of the area1
value. That way when area1.range receives a new value of 4, the number is only
reflected in area1 while area2 still has the original value of 2.5.

Since a class is a reference type, when you assign to a variable of a class type, the
system does not copy the instance; it only copies a reference.

Compare the previous code with the following code:

var homeOwner = john
john.firstName = "John" // John wants to use his short name!
john.firstName // "John"
homeOwner.firstName // "John"

As you can see, john and homeOwner truly have the same value!

This implied sharing among class instances results in a new way of thinking when
passing things around. For instance, if the john object changes, then anything
holding a reference to john will automatically see the update. If you were using a
structure, you would have to update each copy individually, or it would still have the
old value of “Johnny”.

Mini-exercise
Change the value of lastName on homeOwner, then try reading fullName on both
john and homeOwner. What do you observe?

Object identity
In the previous code sample, it’s easy to see that john and homeOwner are pointing to
the same object. The code is short and both references are named variables. What if
you want to see if the value behind a variable is John?

Swift Apprentice Chapter 13: Classes

raywenderlich.com 252

You might think to check the value of firstName, but how would you know it’s the
John you’re looking for and not an imposter? Or worse, what if John changed his
name again?

In Swift, the === operator lets you check if the identity of one object is equal to the
identity of another:

john === homeOwner // true

Just as the == operator checks if two values are equal, the === identity operator
compares the memory address of two references. It tells you whether the value of the
references are the same; that is, they point to the same block of data on the heap.

That means this === operator can tell the difference between the John you’re looking
for and an imposter-John:

let imposterJohn = Person(firstName: "Johnny",
 lastName: "Appleseed")

john === homeOwner // true
john === imposterJohn // false
imposterJohn === homeOwner // false

// Assignment of existing variables changes the instances the
variables reference.
homeOwner = imposterJohn
john === homeOwner // false

homeOwner = john
john === homeOwner // true

This can be particularly useful when you cannot rely on regular equality (==) to
compare and identify objects you care about:

// Create fake, imposter Johns. Use === to see if any of these
imposters are our real John.
var imposters = (0...100).map { _ in
 Person(firstName: "John", lastName: "Appleseed")
}

// Equality (==) is not effective when John cannot be identified
by his name alone
imposters.contains {
 $0.firstName == john.firstName && $0.lastName == john.lastName
} // true

Swift Apprentice Chapter 13: Classes

raywenderlich.com 253

By using the identity operator, you can verify that the references themselves are
equal, and separate our real John from the crowd:

// Check to ensure the real John is not found among the
imposters.
imposters.contains {
 $0 === john
} // false

// Now hide the "real" John somewhere among the imposters.
imposters.insert(john, at: Int.random(in: 0..<100))

// John can now be found among the imposters.
imposters.contains {
 $0 === john
} // true

// Since `Person` is a reference type, you can use === to grab
the real John out of the list of imposters and modify the value.
// The original `john` variable will print the new last name!
if let indexOfJohn = imposters.firstIndex(where:
 { $0 === john }) {
 imposters[indexOfJohn].lastName = "Bananapeel"
}

john.fullName // John Bananapeel

You may actually find that you won’t use the identity operator === very much in your
day-to-day Swift. What’s important is to understand what it does, and what it
demonstrates about the properties of reference types.

Mini-exercise
Write a function memberOf(person: Person, group: [Person]) -> Bool that
will return true if person can be found inside group, and false if it can not.

Test it by creating two arrays of five Person objects for group and using john as the
person. Put john in one of the arrays, but not in the other.

Methods and mutability
As you’ve read before, instances of classes are mutable objects whereas instances of
structures are immutable values. The following example illustrates this difference:

struct Grade {
 let letter: String
 let points: Double

Swift Apprentice Chapter 13: Classes

raywenderlich.com 254

 let credits: Double
}

class Student {
 var firstName: String
 var lastName: String
 var grades: [Grade] = []

 init(firstName: String, lastName: String) {
 self.firstName = firstName
 self.lastName = lastName
 }

 func recordGrade(_ grade: Grade) {
 grades.append(grade)
 }
}

let jane = Student(firstName: "Jane", lastName: "Appleseed")
let history = Grade(letter: "B", points: 9.0, credits: 3.0)
var math = Grade(letter: "A", points: 16.0, credits: 4.0)

jane.recordGrade(history)
jane.recordGrade(math)

Note that recordGrade(_:) can mutate the array grades by adding more values to
the end. Although this mutates the current object, the keyword mutating is not
required.

If you had tried this with a struct, you’d have wound up with a compiler error,
because structures are immutable. Remember, when you change the value of a struct,
instead of modifying the value, you’re making a new value. The keyword mutating
marks methods that replace the current value with a new one. With classes, this
keyword is not used because the instance itself is mutable.

Mutability and constants
The previous example may have had you wondering how you were able to modify
jane even though it was defined as a constant. When you define a constant, the value
of the constant cannot be changed. If you recall back to the discussion of value types
vs reference types, it’s important to remember that, with reference types, the value is
a reference.

Swift Apprentice Chapter 13: Classes

raywenderlich.com 255

The value of “reference1” in red is the value stored in jane. This value is a reference
and because jane is declared as a constant, this reference is constant. If you were to
attempt to assign another student to jane, you would get a compiler error:

// Error: jane is a `let` constant
jane = Student(firstName: "John", lastName: "Appleseed")

If you declared jane as a variable instead, you would be able to assign to it another
instance of Student on the heap:

var jane = Student(firstName: "Jane", lastName: "Appleseed")
jane = Student(firstName: "John", lastName: "Appleseed")

After the assignment of another Student to jane, the reference value behind jane
would be updated to point to the new Student object.

Since nothing would be referencing the original “Jane” object, its memory would be
freed to use elsewhere. You’ll learn more about this in Chapter 23, “Memory
Management”.

Any individual member of a class can be protected from modification through the
use of constants, but because reference types are not themselves treated as values,
they are not protected as a whole from mutation.

Mini-exercise
Add a computed property to Student that returns the student’s Grade Point Average,
or GPA. A GPA is defined as the number of points earned divided by the number of
credits taken. For the example above, Jane earned (9 + 16 = 25) points while taking (3
+ 4 = 7) credits, making her GPA (25 / 7 = 3.57).

Swift Apprentice Chapter 13: Classes

raywenderlich.com 256

Note: Points in most American universities range from 4 per credit for an A,
down to 1 point for a D (with an F being 0 points). For this exercise, you may of
course use any scale that you want!

Understanding state and side effects
Since the very nature of classes is that they are both referenced and mutable, there
are many possibilities — as well as many concerns for programmers. Remember: If
you update a class instance with a new value every reference to that instance will
also see the new value.

You can use this to your advantage. Perhaps you pass a Student instance to a sports
team, a report card and a class roster. Imagine all of these entities need to know the
student’s grades, and because they all point to the same instance, they’ll all see new
grades as the instance records them.

The result of this sharing is that class instances have state. Changes in state can
sometimes be obvious, but often they’re not.

To illustrate this, add a credits property to the Student class.

var credits = 0.0

and update recordGrade(_:) to use this new property:

func recordGrade(_ grade: Grade) {
 grades.append(grade)
 credits += grade.credits
}

Swift Apprentice Chapter 13: Classes

raywenderlich.com 257

In this slightly modified example of Student, recordGrade(_:) now adds the
number of credits to the credits property. Calling recordGrade(_:) has the side
effect of updating credits.

Now, observe how side effects can result in non-obvious behavior:

jane.credits // 7

// The teacher made a mistake; math has 5 credits
math = Grade(letter: "A", points: 20.0, credits: 5.0)
jane.recordGrade(math)

jane.credits // 12, not 8!

Whoever wrote the modified Student class did so somewhat naïvely by assuming
that the same grade won’t get recorded twice!

Because class instances are mutable, you need to be careful about unexpected
behavior around shared references.

While confusing in a small example such as this, mutability and state could be
extremely jarring as classes grow in size and complexity.

Situations like this would be much more common with a Student class that scales to
20 stored properties and has 10 methods.

Extending a class using an extension
As you saw with structs, classes can be re-opened using the extension keyword to
add methods and computed properties. Add a fullName computed property to
Student:

extension Student {
 var fullName: String {
 "\(firstName) \(lastName)"
 }
}

Functionality can also be added to classes using inheritance. You can even add new
stored properties to inheriting classes. You’ll explore this technique in detail in the
next chapter.

Swift Apprentice Chapter 13: Classes

raywenderlich.com 258

When to use a class versus a struct
Now that you know the differences and similarities between a class and a struct, you
may be wondering “How do I know which to use?”

Values vs. objects

While there are no hard-and-fast rules, so you should think about value versus
reference semantics, and use structures as values and classes as objects with identity.

An object is an instance of a reference type, and such instances have identity
meaning that every object is unique. No two objects are considered equal simply
because they hold the same state. Hence, you use === to see if objects are truly equal
and not just containing the same state. In contrast, instances of value types, which
are values, are considered equal if they are the same value.

For example: A delivery range is a value, so you implement it as a struct. A student is
an object so you implement it as a class. In non-technical terms, no two students are
considered equal, even if they have the same name!

Speed

Speed considerations are a thing, as structs rely on the faster stack while classes rely
on the slower heap. If you’ll have many more instances (hundreds and greater), or if
these instances will only exist in memory for a short time — lean towards using a
struct. If your instance will have a longer lifecycle in memory, or if you’ll create
relatively few instances, then class instances on the heap shouldn’t create much
overhead.

For instance, you’d use a struct to calculate the total distance of a running route
using many GPS-based waypoints, such as the Location struct you used in Chapter
10, “Structures”. You’ll create many waypoints, but they’ll be created and destroyed
quickly as you modify the route.

You could also use a class for an object to store route history, as there would be only
one object for each user, and you’d likely use the same history object for the user’s
lifetime.

Swift Apprentice Chapter 13: Classes

raywenderlich.com 259

Minimalist approach

Another approach is to use only what you need. If your data will never change or you
need a simple data store, then use structures. If you need to update your data and
you need it to contain logic to update its own state, then use classes. Often, it’s best
to begin with a struct. If you need the added capabilities of a class sometime later,
then you just convert the struct to a class.

Structures vs. classes recap

Structures

• Useful for representing values.

• Implicit copying of values.

• Becomes completely immutable when declared with let.

• Fast memory allocation (stack).

Classes

• Useful for representing objects with an identity.

• Implicit sharing of objects.

• Internals can remain mutable even when declared with let.

• Slower memory allocation (heap).

Challenges
Before moving on, here are some challenges to test your knowledge of classes. It is
best if you try to solve them yourself, but solutions are available if you get stuck.
These came with the download or are available at the printed book’s source code link
listed in the introduction.

Swift Apprentice Chapter 13: Classes

raywenderlich.com 260

Challenge 1: Movie lists
Imagine you’re writing a movie-viewing app in Swift. Users can create lists of movies
and share those lists with other users. Create a User and a List class that uses
reference semantics to help maintain lists between users.

• User: Has a method addList(_:) that adds the given list to a dictionary of List
objects (using the name as a key), and list(forName:) -> List? that returns the
List for the provided name.

• List: Contains a name and an array of movie titles. A print method will print all
the movies in the list.

• Create jane and john users and have them create and share lists. Have both jane
and john modify the same list and call print from both users. Are all the changes
reflected?

• What happens when you implement the same with structs? What problems do you
run into?

Challenge 2: T-shirt store
Your challenge here is to build a set of objects to support a T-shirt store. Decide if
each object should be a class or a struct, and why.

• TShirt: Represents a shirt style you can buy. Each TShirt has a size, color, price,
and an optional image on the front.

• User: A registered user of the t-shirt store app. A user has a name, email, and a
ShoppingCart (see below).

• Address: Represents a shipping address and contains the name, street, city, and
zip code.

• ShoppingCart: Holds a current order, which is composed of an array of TShirt
that the User wants to buy, as well as a method to calculate the total cost.
Additionally, there is an Address that represents where the order will be shipped.

Bonus: After you’ve decided on whether to use a class or struct for each
object, go ahead and implement them all!

Swift Apprentice Chapter 13: Classes

raywenderlich.com 261

Key points
• Like structures, classes are a named type that can have properties and methods.

• Classes use references that are shared on assignment.

• Class instances are called objects.

• Objects are mutable.

• Mutability introduces state, which adds complexity when managing your objects.

• Use classes when you want reference semantics; structures for value semantics.

Swift Apprentice Chapter 13: Classes

raywenderlich.com 262

14Chapter 14: Advanced
Classes
By Cosmin Pupăză

The previous chapter introduced you to the basics of defining and using classes in
Swift. Classes are reference types and can be used to support traditional object-
oriented programming.

Classes introduce inheritance, overriding, polymorphism which makes them suited
for this purpose. These extra features require special consideration for initialization,
class hierarchies, and understanding the class lifecycle in memory.

This chapter will introduce you to the finer points of classes in Swift, and help you
understand how you can create more complex classes.

raywenderlich.com 263

Introducing inheritance
In the previous chapter, you saw a Grade struct and a pair of class examples: Person
and Student.

struct Grade {
 var letter: Character
 var points: Double
 var credits: Double
}

class Person {
 var firstName: String
 var lastName: String

 init(firstName: String, lastName: String) {
 self.firstName = firstName
 self.lastName = lastName
 }
}

class Student {
 var firstName: String
 var lastName: String
 var grades: [Grade] = []

 init(firstName: String, lastName: String) {
 self.firstName = firstName
 self.lastName = lastName
 }

 func recordGrade(_ grade: Grade) {
 grades.append(grade)
 }
}

It’s not difficult to see that there’s redundancy between Person and Student. Maybe
you’ve also noticed that a Student is a Person!

This simple case demonstrates the idea behind class inheritance. Much like in the
real world, where you can think of a student as a person, you can represent the same
relationship in code by replacing the original Student class implementation with the
following:

class Student: Person {
 var grades: [Grade] = []

 func recordGrade(_ grade: Grade) {
 grades.append(grade)

Swift Apprentice Chapter 14: Advanced Classes

raywenderlich.com 264

 }
}

In this modified example, the Student class now inherits from Person, indicated by
a colon after the naming of Student, followed by the class from which Student
inherits, which in this case is Person.

Through inheritance, Student automatically gets the properties and methods
declared in the Person class. In code, it would be accurate to say that a Student is-a
Person.

With much less duplication of code, you can now create Student objects that have all
the properties and methods of a Person:

let john = Person(firstName: "Johnny", lastName: "Appleseed")
let jane = Student(firstName: "Jane", lastName: "Appleseed")

john.firstName // "John"
jane.firstName // "Jane"

Additionally, only the Student object will have all of the properties and methods
defined in Student:

let history = Grade(letter: "B", points: 9.0, credits: 3.0)
jane.recordGrade(history)
// john.recordGrade(history) // john is not a student!

A class that inherits from another class is known as a subclass or a derived class,
and the class from which it inherits is known as a superclass or a base class.

The rules for subclassing are fairly simple:

• A Swift class can inherit from only one other class, a concept known as single
inheritance.

• There’s no limit to the depth of subclassing, meaning you can subclass from a class
that is also a subclass, like below:

class BandMember: Student {
 var minimumPracticeTime = 2
}

class OboePlayer: BandMember {
 // This is an example of an override, which we’ll cover soon.
 override var minimumPracticeTime: Int {
 get {
 super.minimumPracticeTime * 2

Swift Apprentice Chapter 14: Advanced Classes

raywenderlich.com 265

 }
 set {
 super.minimumPracticeTime = newValue / 2
 }
 }
}

A chain of subclasses is called a class hierarchy. In this example, the hierarchy
would be OboePlayer -> BandMember -> Student -> Person. A class hierarchy is
analogous to a family tree. Because of this analogy, a superclass is also called the
parent class of its child class.

Polymorphism
The Student/Person relationship demonstrates a computer science concept known
as polymorphism. In brief, polymorphism is a programming language’s ability to
treat an object differently based on context.

A OboePlayer is of course a OboePlayer, but it’s also a Person. Because it derives
from Person, you could use a OboePlayer object anywhere you’d use a Person
object.

This example demonstrates how you can treat a OboePlayer as a Person:

func phonebookName(_ person: Person) -> String {
 "\(person.lastName), \(person.firstName)"
}

let person = Person(firstName: "Johnny", lastName: "Appleseed")
let oboePlayer = OboePlayer(firstName: "Jane",
 lastName: "Appleseed")

phonebookName(person) // Appleseed, Johnny
phonebookName(oboePlayer) // Appleseed, Jane

Because OboePlayer derives from Person, it’s a valid input into the function
phonebookName(_:). More importantly, the function has no idea that the object
passed in is anything other than a regular Person. It can only observe the elements
of OboePlayer that are defined in the Person base class.

With the polymorphism characteristics provided by class inheritance, Swift is
treating the object pointed to by oboePlayer differently based on the context. This
can be particularly useful when you have diverging class hierarchies but want code
that operates on a common type or base class.

Swift Apprentice Chapter 14: Advanced Classes

raywenderlich.com 266

Runtime hierarchy checks
Now that you are coding with polymorphism, you’ll likely find situations where the
specific type behind a variable can be different. For instance, you could define a
variable hallMonitor as a Student:

var hallMonitor = Student(firstName: "Jill",
 lastName: "Bananapeel")

But what if hallMonitor were a more derived type, such as an OboePlayer?

hallMonitor = oboePlayer

Because hallMonitor is defined as a Student, the compiler won’t allow you to
attempt calling properties or methods for a more derived type.

Fortunately, Swift provides the as operator to treat a property or a variable as
another type:

• as: Cast to a specific type that is known at compile time to succeed, such as casting
to a supertype.

• as?: An optional downcast (to a subtype). If the downcast fails, the result of the
expression will be nil.

• as!: A forced downcast. If the downcast fails, the program will crash. Use this
rarely, and only when you are certain the cast will never fail.

These can be used in various contexts to treat the hallMonitor as a BandMember, or
the oboePlayer as a less-derived Student.

oboePlayer as Student
(oboePlayer as Student).minimumPracticeTime // ERROR: No longer
a band member!

hallMonitor as? BandMember
(hallMonitor as? BandMember)?.minimumPracticeTime // 4
(optional)

hallMonitor as! BandMember // Careful! Failure would lead to a
runtime crash.
(hallMonitor as! BandMember).minimumPracticeTime // 4 (force
unwrapped)

Swift Apprentice Chapter 14: Advanced Classes

raywenderlich.com 267

The optional downcast as? is particularly useful in if let or guard statements:

if let hallMonitor = hallMonitor as? BandMember {
 print("This hall monitor is a band member and practices
 at least \(hallMonitor.minimumPracticeTime)
 hours per week.")
}

You may be wondering under what contexts you would use the as operator by itself.
Any object contains all the properties and methods of its parent class, so what use is
casting it to something it already is?

Swift has a strong type system, and the interpretation of a specific type can have an
effect on static dispatch, aka the process of deciding of which operation to use at
compile time.

Sound confusing? Let’s see an example.

Assume you have two functions with identical names and parameter names for two
different parameter types:

func afterClassActivity(for student: Student) -> String {
 "Goes home!"
}

func afterClassActivity(for student: BandMember) -> String {
 "Goes to practice!"
}

If you were to pass oboePlayer into afterClassActivity(for:), which one of
these implementations would get called? The answer lies in Swift’s dispatch rules,
which in this case will select the more specific version that takes in an OboePlayer.

If instead you were to cast oboePlayer to a Student, the Student version would be
called:

afterClassActivity(for: oboePlayer) // Goes to practice!
afterClassActivity(for: oboePlayer as Student) // Goes home!

Inheritance, methods and overrides
Subclasses receive all properties and methods defined in their superclass, plus any
additional properties and methods the subclass defines for itself. In that sense,
subclasses are additive.

Swift Apprentice Chapter 14: Advanced Classes

raywenderlich.com 268

For example, you saw that the Student class can add additional properties and
methods to handle a student’s grades. These properties and methods are available to
any Person class instances but fully available to Student subclasses.

Besides creating their own methods, subclasses can override methods defined in their
superclass. For another example, assume that student athletes become ineligible for
the athletics program if they’re failing three or more classes. That means you need to
keep track of failing grades somehow, like so:

class StudentAthlete: Student {
 var failedClasses: [Grade] = []

 override func recordGrade(_ grade: Grade) {
 super.recordGrade(grade)

 if grade.letter == "F" {
 failedClasses.append(grade)
 }
 }

 var isEligible: Bool {
 failedClasses.count < 3
 }
}

In this example, the StudentAthlete class overrides recordGrade(_:) so it can
keep track of any courses the student has failed. StudentAthlete has isEligible,
its own computed property, that uses this information to determine the athlete’s
eligibility.

When overriding a method, use the override keyword before the method
declaration.

If your subclass were to have an identical method declaration as its superclass, but
you omitted the override keyword, Swift would emit a compiler error:

Swift Apprentice Chapter 14: Advanced Classes

raywenderlich.com 269

This makes it very clear whether a method is an override of an existing one or not.

Introducing super
You may have also noticed the line super.recordGrade(grade) in the overridden
method. The super keyword is similar to self, except it will invoke the method in
the nearest implementing superclass. In the example of recordGrade(_:) in
StudentAthlete, calling super.recordGrade(grade) will execute the method as
defined in the Student class.

Remember how inheritance let you define Person with first name and last name
properties and avoid repeating those properties in subclasses? Similarly, being able
to call the superclass methods means you can write the code to record the grade once
in Student and then call “up” to it as needed in subclasses.

Although it isn’t always required, it’s often important to call super when overriding
a method in Swift. The super call is what will record the grade itself in the grades
array, because that behavior isn’t duplicated in StudentAthlete. Calling super is
also a way of avoiding the need for duplicate code in StudentAthlete and Student.

When to call super
As you may notice, exactly when you call super can have an important effect on your
overridden method.

Suppose you replace the overriden recordGrade(_:) method in the
StudentAthlete class with the following version that recalculates the
failedClasses each time a grade is recorded:

override func recordGrade(_ grade: Grade) {
 var newFailedClasses: [Grade] = []
 for grade in grades {
 if grade.letter == "F" {
 newFailedClasses.append(grade)
 }
 }
 failedClasses = newFailedClasses

 super.recordGrade(grade)
}

This version of recordGrade(_:) uses the grades array to find the current list of
failed classes. If you’ve spotted a bug in the code above, good job! Since you call
super last, if the new grade.letter is an F, the code won’t update failedClasses
properly.

Swift Apprentice Chapter 14: Advanced Classes

raywenderlich.com 270

It’s best practice to call the super version of a method first when overriding. That
way, the superclass won’t experience any side effects introduced by its subclass, and
the subclass won’t need to know the superclass’s implementation details.

Preventing inheritance
Sometimes you’ll want to disallow subclasses of a particular class. Swift provides the
final keyword for you to guarantee a class will never get a subclass:

final class FinalStudent: Person {}
class FinalStudentAthlete: FinalStudent {} // Build error!

By marking the FinalStudent class final, you tell the compiler to prevent any
classes from inheriting from FinalStudent. This can remind you — or others on your
team! — that a class wasn’t designed to have subclasses.

Additionally, you can mark individual methods as final, if you want to allow a class
to have subclasses, but protect individual methods from being overridden:

class AnotherStudent: Person {
 final func recordGrade(_ grade: Grade) {}
}

class AnotherStudentAthlete: AnotherStudent {
 override func recordGrade(_ grade: Grade) {} // Build error!
}

There are benefits to initially marking any new class you write as final. This tells
the compiler it doesn’t need to look for any more subclasses, which can shorten
compile time, and it also requires you to be very explicit when deciding to subclass a
class previously marked final. You’ll learn more about controlling who can override
a class in Chapter 18, “Access Control and Code Organization”.

Inheritance and class initialization
The previous chapter briefly introduced you to class initializers, which are similar to
their struct counterparts. With subclasses, there are a few more considerations with
regard to how you set up instances.

Swift Apprentice Chapter 14: Advanced Classes

raywenderlich.com 271

Note: In the chapter’s playground I have renamed Student and
StudentAthlete to NewStudent and NewStudentAthlete in order to keep
both versions working side-by-side.

Modify the StudentAthlete class to add a list of sports an athlete plays:

class StudentAthlete: Student {
 var sports: [String]
 // original code
}

Because sports doesn’t have an initial value, StudentAthlete must provide one in
its own initializer:

class StudentAthlete: Student {
 var sports: [String]

 init(sports: [String]) {
 self.sports = sports
 // Build error - super.init isn’t called before
 // returning from initializer
 }
 // original code
}

Uh-oh! The compiler complains that you didn’t call super.init by the end of the
initializer:

Initializers in subclasses are required to call super.init because without it, the
superclass won’t be able to provide initial states for all its stored properties — in this
case, firstName and lastName.

Swift Apprentice Chapter 14: Advanced Classes

raywenderlich.com 272

Let’s make the compiler happy:

class StudentAthlete: Student {
 var sports: [String]

 init(firstName: String, lastName: String, sports: [String]) {
 self.sports = sports
 super.init(firstName: firstName, lastName: lastName)
 }
 // original code
}

The initializer now calls the initializer of its superclass, and the build error is gone.

Notice that the initializer now takes in a firstName and a lastName to satisfy the
requirements for calling the Person initializer.

You also call super.init after you initialize the sports property, which is an
enforced rule.

Two-phase initialization
Because of Swift’s requirement that all stored properties have initial values,
initializers in subclasses must adhere to Swift’s convention of two-phase
initialization.

• Phase one: Initialize all of the stored properties in the class instance, from the
bottom to the top of the class hierarchy. You can’t use properties and methods
until phase one is complete.

• Phase two: You can now use properties and methods, as well as initializations
that require the use of self.

Without two-phase initialization, methods and operations on the class might
interact with properties before they’ve been initialized.

The transition from phase one to phase two happens after you’ve initialized all
stored properties in the base class of a class hierarchy.

In the scope of a subclass initializer, you can think of this as coming after the call to
super.init.

Swift Apprentice Chapter 14: Advanced Classes

raywenderlich.com 273

Here’s the StudentAthlete class again, with athletes automatically getting a starter
grade:

class StudentAthlete: Student {
 var sports: [String]

 init(firstName: String, lastName: String, sports: [String]) {
 // 1
 self.sports = sports
 // 2
 let passGrade = Grade(letter: "P", points: 0.0,
 credits: 0.0)
 // 3
 super.init(firstName: firstName, lastName: lastName)
 // 4
 recordGrade(passGrade)
 }
 // original code
}

The above initializer shows two-phase initialization in action.

1. First, you initialize the sports property of StudentAthlete. This is part of the
first phase of initialization and has to be done early, before you call the
superclass initializer.

2. Although you can create local variables for things like grades, you can’t call
recordGrade(_:) yet because the object is still in the first phase.

Swift Apprentice Chapter 14: Advanced Classes

raywenderlich.com 274

3. Call super.init. When this returns, you know that you’ve also initialized every
class in the hierarchy, because the same rules are applied at every level.

4. After super.init returns, the initializer is in phase 2, so you call
recordGrade(_:).

Mini-exercise
What’s different in the two-phase initialization in the base class Person, as
compared to the others?

Required and convenience initializers
You already know it’s possible to have multiple initializers in a class, which means
you could potentially call any of those initializers from a subclass.

Often, you’ll find that your classes have various initializers that simply provide a
“convenient” way to initialize an object:

class Student {
 let firstName: String
 let lastName: String
 var grades: [Grade] = []

 init(firstName: String, lastName: String) {
 self.firstName = firstName
 self.lastName = lastName
 }

 init(transfer: Student) {
 self.firstName = transfer.firstName
 self.lastName = transfer.lastName
 }

 func recordGrade(_ grade: Grade) {
 grades.append(grade)
 }
}

In this example, the Student class can be built with another Student object. Perhaps
the student switched majors? Both initializers fully set the first and last names.

Subclasses of Student could potentially rely on the Student-based initializer when
they make their call to super.init. Additionally, the subclasses might not even
provide a method to initialize with first and last names.

Swift Apprentice Chapter 14: Advanced Classes

raywenderlich.com 275

You might decide the first and last name-based initializer is important enough that
you want it to be available to all subclasses.

Swift supports this through the language feature known as required initializers.

class Student {
 let firstName: String
 let lastName: String
 var grades: [Grade] = []

 required init(firstName: String, lastName: String) {
 self.firstName = firstName
 self.lastName = lastName
 }
 // original code
}

In the modified version of Student above, the first and last name-based initializer
has been marked with the keyword required. This keyword will force all subclasses
of Student to implement this initializer.

Now that there’s a required initializer on Student, StudentAthlete must override
and implement it too.

class StudentAthlete: Student {
 // Now required by the compiler!
 required init(firstName: String, lastName: String) {
 self.sports = []
 super.init(firstName: firstName, lastName: lastName)
 }
 // original code
}

Notice how the override keyword isn’t required with required initializers. In its
place, the required keyword must be used to make sure that any subclass of
StudentAthlete still implements this required initializer.

You can also mark an initializer as a convenience initializer:

class Student {
 convenience init(transfer: Student) {
 self.init(firstName: transfer.firstName,
 lastName: transfer.lastName)
 }
 // original code
}

The compiler forces a convenience initializer to call a non-convenience initializer
(directly or indirectly), instead of handling the initialization of stored properties

Swift Apprentice Chapter 14: Advanced Classes

raywenderlich.com 276

itself. A non-convenience initializer is called a designated initializer and is subject
to the rules of two-phase initialization. All initializers you’ve written in previous
examples were in fact designated initializers.

You might want to mark an initializer as convenience if you only use that initializer
as an easy way to initialize an object, but you still want it to leverage one of your
designated initializers.

Here’s a summary of the compiler rules for using designated and convenience
initializers:

1. A designated initializer must call a designated initializer from its immediate
superclass.

2. A convenience initializer must call another initializer from the same class.

3. A convenience initializer must ultimately call a designated initializer.

Mini-exercise
Create two more convenience initializers on Student. Which other initializers are
you able to call?

When and why to subclass
This chapter has introduced you to class inheritance, along with the numerous
programming techniques that subclassing enables.

But you might be asking, “When should I subclass?”

Rarely is there a right or wrong answer, so you need an understanding of the trade-
offs so you can make an informed decision for a particular case.

Using the Student and StudentAthlete classes as an example, you might decide you
can simply put all of the characteristics of StudentAthlete into Student:

class Student: Person {
 var grades: [Grade]
 var sports: [Sport]
 // original code
}

Swift Apprentice Chapter 14: Advanced Classes

raywenderlich.com 277

In reality, this could solve all of the use cases for your needs. A Student that doesn’t
play sports would simply have an empty sports array, and you would avoid some of
the added complexities of subclassing.

Single responsibility
In software development, the guideline known as the single responsibility
principle states that any class should have a single concern. In Student/
StudentAthlete, you might argue that it shouldn’t be the Student class’s job to
encapsulate responsibilities that only make sense to student athletes.

Strong types
Subclassing creates an additional type. With Swift’s type system, you can declare
properties or behavior based on objects that are student athletes, not regular
students:

class Team {
 var players: [StudentAthlete] = []

 var isEligible: Bool {
 for player in players {
 if !player.isEligible {
 return false
 }
 }
 return true
 }
}

A team has players who are student athletes. If you tried to add a regular Student
object to the array of players, the type system wouldn’t allow it. This can be useful as
the compiler can help you enforce the logic and requirement of your system.

Shared base classes
You can subclass a shared base class multiple times by classes that have mutually
exclusive behavior:

// A button that can be pressed.
class Button {
 func press() {}
}

// An image that can be rendered on a button

Swift Apprentice Chapter 14: Advanced Classes

raywenderlich.com 278

class Image {}

// A button that is composed entirely of an image.
class ImageButton: Button {
 var image: Image

 init(image: Image) {
 self.image = image
 }
}

// A button that renders as text.
class TextButton: Button {
 var text: String

 init(text: String) {
 self.text = text
 }
}

In this example, you can imagine numerous Button subclasses that share only the
fact that they can be pressed. The ImageButton and TextButton classes likely use
different mechanisms to render a given button, so they might have to implement
their own behavior to handle presses.

You can see here how storing image and text in the Button class — not to mention
any other kind of button there might be — would quickly become impractical. It
makes sense for Button to be concerned with the press behavior, and the subclasses
to handle the actual look and feel of the button.

Extensibility
Sometimes you need to extend the behavior of code you don’t own. In the example
above, it’s possible Button is part of a framework you’re using, so there’s no way you
can modify or extend the source code to fit your specific case.

But you can subclass Button and add your custom subclass to use with code that’s
expecting an object of type Button.

Note: In addition to flagging a class as final, you can use access control,
which you’ll learn in Chapter 18, “Access Control and Code Organization”, to
designate if any of the members of a class can be subclassed — aka overridden
— or not.

Swift Apprentice Chapter 14: Advanced Classes

raywenderlich.com 279

Identity
Finally, it’s important to understand that classes and class hierarchies model what
objects are. If your goal is to share behavior (what objects can do) between types,
more often than not you should prefer protocols over subclassing. You’ll learn about
protocols in Chapter 16, “Protocols”.

Understanding the class lifecycle
In the previous chapter, you learned that objects are created in memory and that
they’re stored on the heap. Objects on the heap are not automatically destroyed,
because the heap is simply a giant pool of memory. Without the utility of the call
stack, there’s no automatic way for a process to know that a piece of memory will no
longer be in use.

In Swift, the mechanism for deciding when to clean up unused objects on the heap is
known as reference counting. In short, each object has a reference count that’s
incremented for each constant or variable with a reference to that object, and
decremented each time a reference is removed.

Note: You might see the reference count called a “retain count” in other books
and online resources. They refer to the same thing!

When a reference count reaches zero, that means the object is now abandoned since
nothing in the system holds a reference to it. When that happens, Swift will clean up
the object.

Here’s a demonstration of how the reference count changes for an object. Note that
there’s only one actual object created in this example; the one object just has many
references to it.

var someone = Person(firstName: "Johnny", lastName: "Appleseed")
// Person object has a reference count of 1 (someone variable)

var anotherSomeone: Person? = someone
// Reference count 2 (someone, anotherSomeone)

var lotsOfPeople = [someone, someone, anotherSomeone, someone]
// Reference count 6 (someone, anotherSomeone, 4 references in
lotsOfPeople)

Swift Apprentice Chapter 14: Advanced Classes

raywenderlich.com 280

anotherSomeone = nil
// Reference count 5 (someone, 4 references in lotsOfPeople)

lotsOfPeople = []
// Reference count 1 (someone)

Now we create another object and and replace someone with that reference.

someone = Person(firstName: "Johnny", lastName: "Appleseed")
// Reference count 0 for the original Person object!
// Variable someone now references a new object

In this example, you don’t have to do any work yourself to increase or decrease the
object’s reference count. That’s because Swift has a feature known as automatic
reference counting or ARC.

While some older languages require you to increment and decrement reference
counts in your code, the Swift compiler adds these calls automatically at compile
time.

Note: If you use a low-level language like C, you’re required to manually free
memory you’re no longer using yourself. Higher-level languages like Java and
C# use something called garbage collection. In that case, the runtime of the
language will search your process for references to objects, before cleaning up
those that are no longer in use. Garbage collection, while more powerful than
ARC, comes with a memory utilization and performance cost that Apple
decided wasn’t acceptable for mobile devices or a general systems language.

Deinitialization
When an object’s reference count reaches zero, Swift removes the object from
memory and marks that memory as free.

A deinitializer is a special method on classes that runs when an object’s reference
count reaches zero, but before Swift removes the object from memory.

Modify Person as follows:

class Person {
 // original code
 deinit {
 print("\(firstName) \(lastName) is being removed
 from memory!")

Swift Apprentice Chapter 14: Advanced Classes

raywenderlich.com 281

 }
}

Much like init is a special method in class initialization, deinit is a special method
that handles deinitialization. Unlike init, deinit isn’t required and is automatically
invoked by Swift. You also aren’t required to override it or call super within it. Swift
will make sure to call each class deinitializer.

If you add this deinitializer, you’ll see the message Johnny Appleseed is being
removed from memory! in the debug area after running the previous example.

What you do in an deinitializer is up to you. Often you’ll use it to clean up other
resources, save state to a disk or execute any other logic you might want when an
object goes out of scope.

Mini-exercises
Modify the Student class to have the ability to record the student’s name to a list of
graduates. Add the name of the student to the list when the object is deallocated.

Retain cycles and weak references
Because classes in Swift rely on reference counting to remove them from memory,
it’s important to understand the concept of a retain cycle.

Add a field representing a classmate — for example, a lab partner — and a
deinitializer to class Student like this:

class Student: Person {
 var partner: Student?
 // original code
 deinit {
 print("\(firstName) is being deallocated!")
 }
}

var alice: Student? = Student(firstName: "Alice",
 lastName: "Appleseed")
var bob: Student? = Student(firstName: "Bob",
 lastName: "Appleseed")

alice?.partner = bob
bob?.partner = alice

Swift Apprentice Chapter 14: Advanced Classes

raywenderlich.com 282

Now suppose both alice and bob drop out of school:

alice = nil
bob = nil

If you run this in your playground, you’ll notice that you don’t see the message
Alice/Bob is being deallocated!, and Swift doesn’t call deinit. Why is that?

Alice and Bob each have a reference to each other, so the reference count never
reaches zero! To make things worse, by assigning nil to alice and bob, there are no
more references to the initial objects. This is a classic case of a retain cycle, which
leads to a software bug known as a memory leak.

With a memory leak, memory isn’t freed up even though its practical lifecycle has
ended. Retain cycles are the most common cause of memory leaks. Fortunately,
there’s a way that the Student object can reference another Student without being
prone to retain cycles, and that’s by making the reference weak:

class Student: Person {
 weak var partner: Student?
 // original code
}

This simple modification marks the partner variable as weak, which means the
reference in this variable will not take part in reference counting. When a reference
isn’t weak, it’s called a strong reference, which is the default in Swift. Weak
references must be declared as optional types so that when the object that they are
referencing is released, it automatically becomes nil.

Challenges
Before moving on, here are some challenges to test your knowledge of advanced
classes. It is best if you try to solve them yourself, but solutions are available if you
get stuck. These came with the download or are available at the printed book’s
source code link listed in the introduction.

Challenge 1: Initialization order
Create three simple classes called A, B, and C where C inherits from B and B inherits
from A. In each class initializer, call print("I’m <X>!") both before and after
super.init(). Create an instance of C called c. What order do you see each print()
called in?

Swift Apprentice Chapter 14: Advanced Classes

raywenderlich.com 283

Challenge 2: Deinitialization order
Implement deinit for each class. Create your instance c inside of a do { } scope
which will cause the reference count to go to zero when it exits the scope. Which
order are the classes deinitialized in?

Challenge 3: Type casting
Cast the instance of type C to an instance of type A. Which casting operation do you
use and why?

Challenge 4: To subclass or not
Create a subclass of StudentAthlete called StudentBaseballPlayer and include
properties for position, number, and battingAverage. What are the benefits and
drawbacks of subclassing StudentAthlete in this scenario?

Key points
• Class inheritance is one of the most important features of classes and enables

polymorphism.

• Subclassing is a powerful tool, but it’s good to know when to subclass. Subclass
when you want to extend an object and could benefit from an “is-a” relationship
between subclass and superclass, but be mindful of the inherited state and deep
class hierarchies.

• The keyword override makes it clear when you are overriding a method in a
subclass.

• The keyword final can be used to prevent a class from being subclassed.

• Swift classes use two-phase initialization as a safety measure to ensure all stored
properties are initialized before they are used.

• Class instances have their own lifecycles which are controlled by their reference
counts.

• Automatic reference counting, or ARC, handles reference counting for you
automatically, but it’s important to watch out for retain cycles.

Swift Apprentice Chapter 14: Advanced Classes

raywenderlich.com 284

15Chapter 15: Enumerations

By Ben Morrow

One day in your life as a developer, you’ll realize you’re being held captive by your
laptop. Determined to break from convention, you’ll decide to set off on a long trek
by foot. Of course, you’ll need a map of the terrain you’ll encounter. Since it’s the
21st century, and you’re fluent in Swift, you’ll complete one final project: a custom
map app.

As you code away, you think it would be swell if you could represent the cardinal
directions as variables: north, south, east, west. But what’s the best way to do this in
code?

You could represent each value as an integer, like so:

• North: 1

• South: 2

• East: 3

• West: 4

You can see how this could quickly get confusing if you or your users happen to think
of the directions in a different order. “What does 3 mean again?” To alleviate that,
you might represent the values as strings, like so:

• North: "north"

• South: "south"

• East: "east"

• West: "west"

raywenderlich.com 285

The trouble with strings, though, is that the value can be any string. What would
your app do if it received "up" instead of "north"? Furthermore, it’s all to easy to
make a typo like "nrth".

Wouldn’t it be great if there were a way to create a group of related, compiler-
checked values? If you find yourself headed in this... direction, you’ll want to use an
enumeration.

An enumeration is a list of related values that define a common type and let you
work with values in a type-safe way. The compiler will catch your mistake if your
code expects a Direction and you try to pass in a float like 10.7 or a misspelled
direction like "Souuth".

Besides cardinal directions, other good examples of related values are colors (black,
red, blue), card suits (hearts, spades, clubs, diamonds) and roles (administrator,
editor, reader).

Enumerations in Swift are more powerful than they are in other languages such as C
or Objective-C. They share features with the structure and class types you learned
about in the previous chapters. An enumeration can have methods and computed
properties, all while acting as a convenient state machine.

In this chapter, you’ll learn how enumerations work and when they’re useful. As a
bonus, you’ll finally discover what an optional is under the hood. Hint: They are
implemented with enumerations!

Your first enumeration
Your challenge: construct a function that will determine the school semester based
on the month. One way to solve this would be to use an array of strings and match
the semesters with a switch statement:

let months = ["January", "February", "March", "April", "May",
 "June", "July", "August", "September", "October",
 "November", "December"]

func semester(for month: String) -> String {
 switch month {
 case "August", "September", "October", "November", "December":
 return "Autumn"

Swift Apprentice Chapter 15: Enumerations

raywenderlich.com 286

 case "January", "February", "March", "April", "May":
 return "Spring"
 default:
 return "Not in the school year"
 }
}

semester(for: "April") // Spring

Running this code in a playground, you can see that the function correctly returns
"Spring". But as I mentioned in the introduction, you could easily mistype a string.
A better way to tackle this would be with an enumeration.

Declaring an enumeration
To declare an enumeration, you list out all the possible member values as case
clauses:

enum Month {
 case january
 case february
 case march
 case april
 case may
 case june
 case july
 case august
 case september
 case october
 case november
 case december
}

This code creates a new enumeration called Month with 12 possible member values.
The commonly accepted best practice is to start each member value with a lower case
first letter, just like a property.

You can simplify the code a bit by collapsing the case clauses down to one line, with
each value separated by a comma:

enum Month {
 case january, february, march, april, may, june, july, august,
 september, october, november, december
}

That looks snazzy and simple. So far, so good.

Swift Apprentice Chapter 15: Enumerations

raywenderlich.com 287

Deciphering an enumeration in a function
You can rewrite the function that determines the semester so that it uses
enumeration values instead of string-matching.

func semester(for month: Month) -> String {
 switch month {
 case Month.august, Month.september, Month.october,
 Month.november, Month.december:
 return "Autumn"
 case Month.january, Month.february, Month.march, Month.april,
 Month.may:
 return "Spring"
 default:
 return "Not in the school year"
 }
}

Since Swift is strongly-typed and uses type inference, you can simplify
semester(for:) by removing the enumeration name in places where the compiler
already knows the type. Keep the dot prefix, but lose the enumeration name, as
shown below for the cases inside the switch statement:

func semester(for month: Month) -> String {
 switch month {
 case .august, .september, .october, .november, .december:
 return "Autumn"
 case .january, .february, .march, .april, .may:
 return "Spring"
 default:
 return "Not in the school year"
 }
}

Also, recall that switch statements must be exhaustive with their cases. The
compiler will warn you if they aren’t. When your case patterns are String elements,
you need a default case because it’s impossible to create cases to match every
possible String value. However, enumerations have a limited set of values you can
match against. So if you have cases for each member value of the enumeration, you
can safely remove the default case of the switch statement:

func semester(for month: Month) -> String {
 switch month {
 case .august, .september, .october, .november, .december:
 return "Autumn"
 case .january, .february, .march, .april, .may:
 return "Spring"
 case .june, .july:

Swift Apprentice Chapter 15: Enumerations

raywenderlich.com 288

 return "Summer"
 }
}

That’s much more readable. There is another huge benefit to getting rid of the
default. If in a future update, someone added .undecember or .duodecember to the
Month enumeration, the compiler would automatically flag this and any other
switch statement as being non-exhaustive, allowing you to handle this specific case.

You can test this function in a playground like so:

var month = Month.april
semester(for: month) // "Spring"

month = .september
semester(for: month) // "Autumn"

The variable declaration for month uses the full enumeration type and value. In the
second assignment, you can use the shorthand .september, since the compiler
already knows the type. Finally, you pass both months to semester(for:), where a
switch statement returns the strings "Spring" and "Autumn" respectively.

Mini-exercise
Wouldn’t it be nice to request the semester from an instance like month.semester
instead of using the function? Add a semester computed property to the month
enumeration so that you can run this code:

let semester = month.semester // "Autumn"

Code completion prevents typos
Another advantage of using enumerations instead of strings is that you’ll never have
a typo in your member values. Xcode provides code completion:

Swift Apprentice Chapter 15: Enumerations

raywenderlich.com 289

And if you do misspell an enumeration value, the compiler will complain with an
error, so you won’t get too far down the line without recognizing your mistake:

Raw values
Unlike enumeration values in C, Swift enum values are not backed by integers as a
default. That means january is itself the value.

But you can associate a raw value with each enumeration case simply by declaring
the raw value in the enumeration declaration:

enum Month: Int {

Swift enumerations are flexible: you can specify other raw value types like String,
Float or Character. As in C, if you use integers and don’t specify values as you’ve
done here, Swift will automatically assign the values 0, 1, 2 and up.

In this case, it would be better if January had the raw value of 1 rather than 0. To
specify your own raw values, use the = assignment operator:

enum Month: Int {
 case january = 1, february = 2, march = 3, april = 4, may = 5,
 june = 6, july = 7, august = 8, september = 9,
 october = 10, november = 11, december = 12
}

This code assigns an integer value to each enumeration case.

There’s another handy shortcut here: the compiler will automatically increment the
values if you provide the first one and leave out the rest:

enum Month: Int {
 case january = 1, february, march, april, may, june, july,
 august, september, october, november, december
}

You can use the enumeration values alone and never refer to the raw values if you
don’t want to. But the raw values will be there behind the scenes if you ever do need
them!

Swift Apprentice Chapter 15: Enumerations

raywenderlich.com 290

Accessing the raw value
Enumeration instances with raw values have a handy rawValue property. With the
raw values in place, your enumeration has a sense of order, and you can calculate the
number of months left until winter break:

func monthsUntilWinterBreak(from month: Month) -> Int {
 Month.december.rawValue - month.rawValue
}
monthsUntilWinterBreak(from: .april) // 8

Initializing with the raw value
You can use the raw value to instantiate an enumeration value with an initializer.
You can use init(rawValue:) to do this, but if you try to use the value afterward,
you’ll get an error:

let fifthMonth = Month(rawValue: 5)
monthsUntilWinterBreak(from: fifthMonth) // Error: not unwrapped

There’s no guarantee that the raw value you submitted exists in the enumeration, so
the initializer returns an optional. Enumeration initializers with the rawValue:
parameter are failable initializers, meaning if things go wrong, the initializer will
return nil.

If you’re using these raw value initializers in your own projects, remember that they
return optionals. If you’re unsure if the raw value is correct, you’ll need to either
check for nil or use optional binding. In this case, the value 5 must be correct, so it’s
appropriate to force unwrap the optional:

let fifthMonth = Month(rawValue: 5)!
monthsUntilWinterBreak(from: fifthMonth) // 7

Swift Apprentice Chapter 15: Enumerations

raywenderlich.com 291

That’s better! You used the exclamation mark, !, to force unwrap the optional. Now
there’s no error, and monthsUntilWinterBreak(from:) returns 7 as expected.

Mini-exercise
Make monthsUntilWinterBreak a computed property of the Month enumeration, so
that you can execute the following code:

let monthsLeft = fifthMonth.monthsUntilWinterBreak // 7

String raw values
Similar to the handy trick of incrementing an Int raw value, if you specify a raw
value type of String you’ll get another automatic conversion. Let’s pretend you’re
building a news app that has tabs for each section. Each section has an icon. Icons
are a good opportunity to deploy enumerations because, by their nature, they are a
limited set:

// 1
enum Icon: String {
 case music
 case sports
 case weather

 var filename: String {
 // 2
 "\(rawValue).png"
 }
}
let icon = Icon.weather
icon.filename // weather.png

Here’s what’s happening in this code:

1. The enumeration sports a String raw value type.

2. Calling rawValue inside the enumeration definition is equivalent to calling
self.rawValue. Since the raw value is a string, you can use it to build a file
name.

Note you didn’t have to specify a String for each member value. If you set the raw
value type of the enumeration to String and don’t specify any raw values yourself,
the compiler will use the enumeration case names as raw values. The filename
computed property will generate an image asset name for you. You can now fetch
and display images for the tab icons in your app.

Swift Apprentice Chapter 15: Enumerations

raywenderlich.com 292

Next, let’s jump back to working with numerical raw values and learn how to use
enumerations for banking.

Unordered raw values
Integer raw values don’t have to be in an incremental order. Coins are a good use
case:

enum Coin: Int {
 case penny = 1
 case nickel = 5
 case dime = 10
 case quarter = 25
}

You can instantiate values of this type and access their raw values as usual:

let coin = Coin.quarter
coin.rawValue // 25

Mini-exercise
Create an array called coinPurse that contains coins. Add an assortment of pennies,
nickels, dimes and quarters to it.

Associated values
Associated values take Swift enumerations to the next level in expressive power.
They let you associate a custom value (or values) with each enumeration case.

Here are some unique qualities of associated values:

1. Each enumeration case has zero or more associated values.

2. The associated values for each enumeration case have their own data type.

3. You can define associated values with label names like you would for named
function parameters.

Swift Apprentice Chapter 15: Enumerations

raywenderlich.com 293

An enumeration can have raw values or associated values, but not both.

In the last mini-exercise, you defined a coin purse. Let’s say you took your money to
the bank and deposited it. You could then go to an ATM and withdraw your money:

var balance = 100

func withdraw(amount: Int) {
 balance -= amount
}

The ATM will never let you withdraw more than you put in, so it needs a way to let
you know whether the transaction was successful. You can implement this as an
enumeration with associated values:

enum WithdrawalResult {
 case success(newBalance: Int)
 case error(message: String)
}

Each case has a required value to go along with it. For the success case, the
associated Int will hold the new balance; for the error case, the associated String
will have some kind of error message.

Then you can rewrite the withdraw function to use the enumeration cases:

func withdraw(amount: Int) -> WithdrawalResult {
 if amount <= balance {
 balance -= amount
 return .success(newBalance: balance)
 } else {
 return .error(message: "Not enough money!")
 }
}

Now you can perform a withdrawal and handle the result:

let result = withdraw(amount: 99)

switch result {
case .success(let newBalance):
 print("Your new balance is: \(newBalance)")
case .error(let message):
 print(message)
}

Notice how you used let bindings to read the associated values. Associated values
aren’t properties you can access freely, so you’ll need bindings like these to read

Swift Apprentice Chapter 15: Enumerations

raywenderlich.com 294

them. Remember that the newly bound constants newBalance and message are local
to the switch cases. They aren’t required to have the same name as the associated
values, although it’s common practice to do so.

You’ll see "Your new balance is: 1" printed out in the debug console.

Many real-world contexts function by accessing associated values in an enumeration.
For example, internet servers often use enumerations to differentiate between types
of requests:

enum HTTPMethod {
 case get
 case post(body: String)
}

In the bank account example, you had multiple values you wanted to check for in the
enumeration. In places where you only have one, you could instead use pattern
matching in an if case or guard case statement. Here’s how that works:

let request = HTTPMethod.post(body: "Hi there")
guard case .post(let body) = request else {
 fatalError("No message was posted")
}
print(body)

In this code, guard case checks to see if request contains the post enumeration
case and if so, reads and binds the associated value.

You’ll also see enumerations used in error handling. The bank account example had
multiple cases, but just one generic error case with an associated string. In Chapter
21, “Error Handling” you’ll see how to set up an enumeration with multiple cases to
cover individual error conditions.

Enumeration as state machine
An enumeration is an example of a state machine, meaning it can only ever be a
single enumeration value at a time, never more. The friendly traffic light illustrates
this concept well:

enum TrafficLight {
 case red, yellow, green
}
let trafficLight = TrafficLight.red

Swift Apprentice Chapter 15: Enumerations

raywenderlich.com 295

A working traffic light will never be red and green simultaneously. You can observe
this state machine behavior in other modern devices that follow a predetermined
sequence of actions in response to a sequence of events. Examples of state machines
include:

• Vending machines that dispense soda when the customer deposits the proper
amount of money.

• Elevators that drop riders off at upper floors before going down.

• Combination locks that require combination numbers in the proper order.

To operate as expected, these devices depend on an enumeration’s guarantee that it
will only ever be in one state at a time.

Mini-exercise
A household light switch is another example of a state machine. Create an
enumeration for a light that can switch .on and .off.

Iterating through all cases
Sometimes you want to loop through all of the cases in an enumeration. This is easy
to do:

enum Pet: CaseIterable {
 case cat, dog, bird, turtle, fish, hamster
}

for pet in Pet.allCases {
 print(pet)
}

When you conform to the CaseIterable protocol, your enumeration gains a class
method called allCases that lets you loop through each case in the order that it was
declared. This prints:

cat
dog
bird
turtle
fish
hamster

Swift Apprentice Chapter 15: Enumerations

raywenderlich.com 296

Enumerations without any cases
In Chapter 12, “Methods” you learned how to create a namespace for a group of
related type methods. The example in that chapter looked like this:

struct Math {
 static func factorial(of number: Int) -> Int {
 (1...number).reduce(1, *)
 }
}
let factorial = Math.factorial(of: 6) // 720

One thing you may not have realized at the time is that you could create an instance
of Math, like so:

let math = Math()

The math instance doesn’t serve any purpose since it is completely empty; it doesn’t
have any stored properties. In cases like this, the better design is actually to
transform Math from a structure to an enumeration:

enum Math {
 static func factorial(of number: Int) -> Int {
 (1...number).reduce(1, *)
 }
}
let factorial = Math.factorial(of: 6) // 720

Now if you try to make an instance, the compiler will give you an error:

let math = Math() // ERROR: No accessible initializers

Enumerations with no cases are sometimes referred to as uninhabited types or
bottom types.

As you learned at the beginning of this chapter, enumerations are quite powerful.
They can do most everything a structure can, including having custom initializers,
computed properties and methods. In order to create an instance of an enumeration
though, you have to assign a member value as the state. If there are no member
values, then you won’t be able to create an instance.

That works perfectly for you in this case (pun intended). There’s no reason to have an
instance of Math. You should make the design decision that there will never be an
instance of the type.

Swift Apprentice Chapter 15: Enumerations

raywenderlich.com 297

That will prevent future developers from accidentally creating an instance and help
enforce its use as you intended. So in summary, choose a case-less enumeration
when it would be confusing if a valueless instance existed.

Mini-exercise
Euler’s number is useful in calculations for statistical bell curves and compound
growth rates. Add the constant e, 2.7183, to your Math namespace. Then you can
figure out how much money you’ll have if you invest $25,000 at 7% continuous
interest for 20 years:

let nestEgg = 25000 * pow(Math.e, 0.07 * 20) // $101,380.95

Note: In everyday life, you should use M_E from the Foundation library for the
value of e. The Math namespace here is just for practice.

Optionals
Since you’ve made it through the lesson on enumerations, the time has come to let
you in on a little secret. There’s a Swift language feature that has been using
enumerations right under your nose all along: optionals! In this section, you’ll
explore their underlying mechanism.

Optionals act like containers that have either something or nothing inside:

var age: Int?
age = 17
age = nil

Optionals are really enumerations with two cases:

1. .none means there’s no value.

2. .some means there is a value, which is attached to the enumeration case as an
associated value.

You can extract the associated value from an optional with a switch statement, as
you’ve already seen:

switch age {
case .none:

Swift Apprentice Chapter 15: Enumerations

raywenderlich.com 298

 print("No value")
case .some(let value):
 print("Got a value: \(value)")
}

You’ll see the "No value" message printed out in the debug console.

Although optionals are really enumerations under the hood, Swift hides the
implementation details with things like optional binding, the ? and ! operators, and
keywords such as nil.

let optionalNil: Int? = .none
optionalNil == nil // true
optionalNil == .none // true

If you try this in a playground, you’ll see that nil and .none are equivalent.

In Chapter 17, “Generics” you’ll learn a bit more about the underlying mechanism for
optionals, including how to write your own code to function in the same manner as
optionals.

Now that you know how optionals work, the next time you need a value container,
you’ll have the right tool for the job.

Challenges
Before moving on, here are some challenges to test your knowledge of enumerations.
It is best if you try to solve them yourself, but solutions are available if you get stuck.
These came with the download or are available at the printed book’s source code link
listed in the introduction.

Challenge 1: Adding raw values
Take the coin example from earlier in the chapter then begin with the following array
of coins:

enum Coin: Int {
 case penny = 1
 case nickel = 5
 case dime = 10
 case quarter = 25
}

let coinPurse: [Coin] =

Swift Apprentice Chapter 15: Enumerations

raywenderlich.com 299

[.penny, .quarter, .nickel, .dime, .penny, .dime, .quarter]

Write a function where you can pass in the array of coins, add up the value and then
return the number of cents.

Challenge 2: Computing with raw values
Take the example from earlier in the chapter and begin with the Month enumeration:

enum Month: Int {
 case january = 1, february, march, april, may, june, july,
 august, september, october, november, december
}

Write a computed property to calculate the number of months until summer.

Hint: You’ll need to account for a negative value if summer has already passed in the
current year. To do that, imagine looping back around for the next full year.

Challenge 3: Pattern matching enumeration
values
Take the map example from earlier in the chapter and begin with the Direction
enumeration:

enum Direction {
 case north
 case south
 case east
 case west
}

Imagine starting a new level in a video game. The character makes a series of
movements in the game. Calculate the position of the character on a top-down level
map after making a set of movements:

let movements: [Direction] = [.north, .north, .west, .south,
 .west, .south, .south, .east, .east, .south, .east]

Hint: Use a tuple for the location:

var location = (x: 0, y: 0)

Swift Apprentice Chapter 15: Enumerations

raywenderlich.com 300

Key points
• An enumeration is a list of mutually exclusive cases that define a common type.

• Enumerations provide a type-safe alternative to old-fashioned integer values.

• You can use enumerations to handle responses, store state and encapsulate values.

• CaseIterable lets you loop through an enumeration with allCases.

• Uninhabited enumerations can be used as namespaces and prevent the creation
of instances.

Swift Apprentice Chapter 15: Enumerations

raywenderlich.com 301

16Chapter 16: Protocols

By Ehab Amer

In this book, you’ve learned about the three named types: structs, classes and enums.
There’s one more named type to learn about: the protocol.

Unlike the other named types, protocols don’t define anything you instantiate
directly. Instead, they define an interface or blueprint that actual concrete types
conform to. With a protocol, you define a common set of properties and behaviors
that concrete types go and implement.

You’ve been using protocol behind the scenes from the beginning of this book. In
this chapter, you’ll learn the details about protocols and see why they’re central to
programming in Swift

raywenderlich.com 302

Introducing protocols
You define a protocol much as you do any other named type. Enter the following into
a playground:

protocol Vehicle {
 func accelerate()
 func stop()
}

The keyword protocol is followed by the name of the protocol, followed by the curly
braces with the members of the protocol inside. The big difference you’ll notice is
that the protocol doesn’t contain any implementation.

That means you can’t instantiate a Vehicle directly:

Instead, you use protocols to enforce methods and properties on other types. What
you’ve defined here is something like the idea of a vehicle — it’s something that can
accelerate and stop.

Protocol syntax
A protocol can be adopted by a class, struct or enum — and when another type
adopts a protocol, it’s required to implement the methods and properties defined in
the protocol. Once a type implements all members of a protocol, the type is said to
conform to the protocol.

Here’s how you declare protocol conformance for your type. In the playground, define
a new class that will conform to Vehicle:

class Unicycle: Vehicle {
 var peddling = false

 func accelerate() {
 peddling = true
 }

 func stop() {
 peddling = false
 }
}

Swift Apprentice Chapter 16: Protocols

raywenderlich.com 303

You follow the name of the named type with a colon and the name of the protocol
you want to conform to. This syntax might look familiar, since it’s the same syntax
you use to make a class inherit from another class. In this example, Unicycle
conforms to the Vehicle protocol.

Note that it looks like class inheritance but it isn’t; structs and enumerations can also
conform to protocols with this syntax.

If you were to remove the definition of stop() from the class Unicycle above, Swift
would display an error since Unicycle wouldn’t have fully conformed to the Vehicle
protocol.

You’ll come back to the details of implementing protocols in a bit, but first you’ll see
what’s possible when defining protocols.

Methods in protocols
In the Vehicle protocol above, you define a pair of methods, accelerate() and
stop(), that all types conforming to Vehicle must implement.

You define methods on protocols much like you would on any class, struct or enum
with parameters and return values:

enum Direction {
 case left
 case right
}

protocol DirectionalVehicle {
 func accelerate()
 func stop()
 func turn(_ direction: Direction)
 func description() -> String
}

There are a few differences to note. You don’t, and in fact can’t, define any
implementation for the methods. This is to help you enforce a strict separation of
interface and code, as the protocol by itself makes no assumption about the
implementation details of any type that conforms to the protocol.

Also, methods defined in protocols can’t contain default parameters:

protocol OptionalDirectionVehicle {

Swift Apprentice Chapter 16: Protocols

raywenderlich.com 304

 // Build error!
 func turn(_ direction: Direction = .left)
}

To provide direction as an optional argument, you’d define both versions of the
method explicitly:

protocol OptionalDirectionVehicle {
 func turn()
 func turn(_ direction: Direction)
}

Keep in mind when you conform to OptionalDirectionVehicle you will need to
implement both turn() and turn(_:). If you implement only one function with a
default parameter, Xcode won’t be happy, and it will ask you to add the other
method.

Note: This isn’t really creating a method with an optional parameter. To
completely achieve that, protocol extensions are what you want. You’ll learn
more about them in Chapter 25, “Protocol-Oriented Programming”.

Properties in protocols
You can also define properties in a protocol:

protocol VehicleProperties {
 var weight: Int { get }
 var name: String { get set }
}

When defining properties in a protocol, you must explicitly mark them as get or get
set, somewhat similar to the way you declare computed properties. However, much
like methods, you don’t include any implementation for properties.

The fact that you must mark get and set on properties shows that a protocol doesn’t
know about a property’s implementation, which means it makes no assumption
about the property’s storage. You can implement these property requirements as
computed properties or as regular variables. All the protocol requires is that the
property is either readable, if it has only a get requirement, or readable and writable,
if it has both a get and a set requirement.

Swift Apprentice Chapter 16: Protocols

raywenderlich.com 305

Even if the property has only a get requirement, you’re still allowed to implement it
as a stored property or a read-write computed property, as the requirements in the
protocol are only minimum requirements.

Initializers in protocols
While protocols themselves can’t be initialized, they can declare initializers that
conforming types should have:

protocol Account {
 var value: Double { get set }
 init(initialAmount: Double)
 init?(transferAccount: Account)
}

In the Account protocol above, you define two initializers as part of the protocol.
This behaves much as you might expect, in that any type that conforms to Account is
required to have these initializers. If you conform to a protocol with required
initializers using a class type, those initializers must use the required keyword:

class BitcoinAccount: Account {
 var value: Double
 required init(initialAmount: Double) {
 value = initialAmount
 }
 required init?(transferAccount: Account) {
 guard transferAccount.value > 0.0 else {
 return nil
 }
 value = transferAccount.value
 }
}

var accountType: Account.Type = BitcoinAccount.self
let account = accountType.init(initialAmount: 30.00)
let transferAccount = accountType.init(transferAccount:
account)!

Protocol inheritance
The Vehicle protocol contains a set of methods that could apply to any type of
vehicle, such as a bike, a car, a snowmobile or even an airplane!

Swift Apprentice Chapter 16: Protocols

raywenderlich.com 306

You may wish to define a protocol that contains all the qualities of a Vehicle, but
that is also specific to vehicles with wheels. For this, you can have protocols that
inherit from other protocols, much like you can have classes that inherit from other
classes:

protocol WheeledVehicle: Vehicle {
 var numberOfWheels: Int { get }
 var wheelSize: Double { get set }
}

Now any type you mark as conforming to the WheeledVehicle protocol will have all
the members defined within the braces, in addition to all of the members of Vehicle.
As with subclassing, any type you mark as a WheeledVehicle will have an is-a
relationship with the protocol Vehicle.

Mini-exercises
1. Create a protocol Area that defines a read-only property area of type Double.

2. Implement Area with structs representing Square, Triangle and Circle.

3. Add a circle, a square and a triangle to an array. Convert the array of shapes to an
array of areas using map.

Swift Apprentice Chapter 16: Protocols

raywenderlich.com 307

Implementing protocols
As you’ve already seen, when you declare your type as conforming to a protocol, you
must implement all the requirements declared in the protocol:

class Bike: Vehicle {
 var peddling = false
 var brakesApplied = false

 func accelerate() {
 peddling = true
 brakesApplied = false
 }

 func stop() {
 peddling = false
 brakesApplied = true
 }
}

The class Bike implements all the methods defined in Vehicle. If accelerate() or
stop() weren’t defined, you’d receive a build error.

Defining a protocol guarantees any type that conforms to the protocol will have all
the members you’ve defined in the protocol.

Implementing properties
Recall that properties in protocols come with a get and possibly a set requirement
and that a conforming type must conform to at least these requirements.

Upgrade Bike to a WheeledVehicle:

class Bike: WheeledVehicle {

 let numberOfWheels = 2
 var wheelSize = 16.0

 var peddling = false
 var brakesApplied = false

 func accelerate() {
 peddling = true
 brakesApplied = false
 }

 func stop() {
 peddling = false

Swift Apprentice Chapter 16: Protocols

raywenderlich.com 308

 brakesApplied = true
 }
}

The numberOfWheels constant fulfills the get requirement. The wheelSize variable
fulfills both get and set requirements.

Protocols don’t care how you implement their requirements, as long as you
implement them. Your choices for implementing a get requirement are:

• A constant stored property.

• A variable stored property.

• A read-only computed property.

• A read-write computed property.

Your choices for implementing both a get and a set property are limited to a
variable stored property or a read-write computed property.

Associated types in protocols
You can also add an associated type as a protocol member. When using
associatedtype in a protocol, you’re simply stating there is a type used in this
protocol, without specifying what type this should be. It’s up to the protocol adopter
to decide what the exact type should be.

This lets you give arbitrary names to types without specifying exactly which type it
will eventually be:

protocol WeightCalculatable {
 associatedtype WeightType
 var weight: WeightType { get }
}

This delegates the decision of the type of weight to the concrete implementation.

You can see how this works in the two examples below:

class HeavyThing: WeightCalculatable {
 // This heavy thing only needs integer accuracy
 typealias WeightType = Int

 var weight: Int { 100 }
}

Swift Apprentice Chapter 16: Protocols

raywenderlich.com 309

class LightThing: WeightCalculatable {
 // This light thing needs decimal places
 typealias WeightType = Double

 var weight: Double { 0.0025 }
}

In these examples, you use typealias to be explicit about the associated type. This
usually isn’t required, as the compiler can often infer the type. In the previous
examples, the type of weight makes it clear what the associated type should be, so
you can remove typealias.

You may have noticed that the contract of WeightCalculatable now changes
depending on the choice of associated type in the adopting type. Note that this
prevents you from using the protocol as a simple variable type, because the compiler
doesn’t know what WeightType will be ahead of time.

// Build error!
// protocol 'WeightCalculatable' can only be used as a generic
// constraint because it has Self or associated type
requirements.
let weightedThing: WeightCalculatable = LightThing()

You’ll learn all about generic constraints in the next chapter.

Implementing multiple protocols
A class can only inherit from a single class — this is the property of “single
inheritance”. In contrast, a class (struct or enum) can be made to conform to as many
protocols as you’d like!

Suppose instead of creating a WheeledVehicle protocol that inherits from Vehicle,
you made Wheeled its own protocol.

protocol Wheeled {
 var numberOfWheels: Int { get }
 var wheelSize: Double { get set }
}

class Bike: Vehicle, Wheeled {
 // Implement both Vehicle and Wheeled
}

Protocols support “multiple conformance”, so you can apply any number of protocols
to types you define. In the example above, the Bike class now has to implement all
members defined in the Vehicle and Wheeled protocols.

Swift Apprentice Chapter 16: Protocols

raywenderlich.com 310

Protocol composition
In the previous section, you learned how to implement multiple protocols.
Sometimes you need a function to take a data type that must conform to multiple
protocols. That is where protocol composition comes in. Imagine you need a
function that needs access to the Vehicle protocol’s stop() function and the
Wheeled protocol’s numberOfWheels property. You can do this using the &
composition operator.

func roundAndRound(transportation: Vehicle & Wheeled) {
 transportation.stop()
 print("The brakes are being applied to
 \(transportation.numberOfWheels) wheels.")
}

roundAndRound(transportation: Bike())
// The brakes are being applied to 2 wheels.

Extensions & protocol conformance
You can also adopt protocols using extensions. This lets you add protocol
conformances to types you don’t necessarily own. Consider the simple example
below which adds a custom protocol to String:

protocol Reflective {
 var typeName: String { get }
}

extension String: Reflective {
 var typeName: String {
 "I’m a String"
 }
}

let title = "Swift Apprentice!"
title.typeName // I’m a String

Even though String is part of the standard library, you’re still able to make String
conform to the Reflective protocol.

Another advantage of using extensions is that you can nicely group together the
protocol adoption with the requisite methods and properties, instead of having a pile
of protocols cluttering up your type definition.

Swift Apprentice Chapter 16: Protocols

raywenderlich.com 311

The following code breaks out the adoption of Vehicle into an extension on
AnotherBike:

class AnotherBike: Wheeled {
 var peddling = false
 let numberOfWheels = 2
 var wheelSize = 16.0
}

extension AnotherBike: Vehicle {
 func accelerate() {
 peddling = true
 }

 func stop() {
 peddling = false
 }
}

This extension pairs accelerate and stop with Vehicle. If you were to remove the
Vehicle protocol from AnotherBike, you could simply delete the extension that
adopts this protocol entirely.

A caveat: You can’t declare stored properties in extensions. You can still
declare stored properties in the original type declaration and satisfy protocol
conformance to any protocol adopted in an extension, but completely
implementing protocols in extensions isn’t always possible due to the limits of
extensions.

Requiring reference semantics
Protocols can be adopted by both value types (structs and enums) and reference
types (classes), so you might wonder if protocols have reference or value semantics.

The truth is... it depends! If you have an instance of a class or struct assigned to a
variable of a protocol type, it will express value or reference semantics that match
the type it was defined as.

To illustrate, take the simple example of a Named protocol below, implemented as a
struct and a class:

protocol Named {
 var name: String { get set }
}

Swift Apprentice Chapter 16: Protocols

raywenderlich.com 312

class ClassyName: Named {
 var name: String
 init(name: String) {
 self.name = name
 }
}

struct StructyName: Named {
 var name: String
}

If you were to assign a Named variable an instance of a reference type, you would see
the behavior of reference semantics:

var named: Named = ClassyName(name: "Classy")
var copy = named

named.name = "Still Classy"
named.name // Still Classy
copy.name // Still Classy

Likewise, if you assign an instance of a value type, you would see the behavior of
value semantics:

named = StructyName(name: "Structy")
copy = named

named.name = "Still Structy?"
named.name // Still Structy?
copy.name // Structy

The situation isn’t always this clear. You’ll notice that, most of the time, Swift will
favor value semantics over reference semantics. If you’re designing a protocol to be
adopted exclusively by classes, it’s best to request that Swift uses reference
semantics when using this protocol as a type.

protocol Named: class {
 var name: String { get set }
}

By using the class constraint above, you indicate that only classes may adopt this
protocol. This makes it clear that Swift should use reference semantics.

Note: You can learn more about the difference between value type and
reference type sematics in Chapter 24, “Value Types and Value Semantics”.

Swift Apprentice Chapter 16: Protocols

raywenderlich.com 313

Protocols: More than bags of syntax
As you have seen, protocols let you specify many syntax requirements for
conforming types. However, they can’t (and never will) be able to let you specify
every conceivable requirement that the compiler can check. For example, a protocol
may need to specify complexity requirements (O(1) vs O(n)) for an operation. It can
do this only by stating it in comments. It is important for you to understand all of the
requirements that a protocol makes to correctly conform.

Protocols in the Standard Library
The Swift standard library uses protocols extensively in ways that may surprise you.
Understanding the roles protocols play in Swift can help you write clean, decoupled
“Swifty” code.

Equatable
Some of the simplest code compares two integers with the == operator:

let a = 5
let b = 5

a == b // true

You can do the same thing with strings:

let swiftA = "Swift"
let swiftB = "Swift"

swiftA == swiftB // true

But you can’t use == on any type. Suppose you wrote a class to represents a team’s
record and wanted to determine if two records were equal:

class Record {

 var wins: Int
 var losses: Int

 init(wins: Int, losses: Int) {
 self.wins = wins
 self.losses = losses
 }
}

Swift Apprentice Chapter 16: Protocols

raywenderlich.com 314

let recordA = Record(wins: 10, losses: 5)
let recordB = Record(wins: 10, losses: 5)

recordA == recordB // Build error!

You can’t apply the == operator to the class you just defined. But the use of the
equality operator isn’t simply “magic” reserved for standard Swift types like Int and
String; they’re structs, just like Record. This means you can extend the use of this
operator to your own code!

Both Int and String conform to the Equatable protocol from the the standard
library that defines a single static method:

protocol Equatable {
 static func ==(lhs: Self, rhs: Self) -> Bool
}

You can apply this protocol to Record like so:

extension Record: Equatable {
 static func ==(lhs: Record, rhs: Record) -> Bool {
 lhs.wins == rhs.wins &&
 lhs.losses == rhs.losses
 }
}

Here, you’re defining (or overloading) the == operator for comparing two Record
instances. In this case, two records are equal if they have the same number of wins
and losses.

Now, you’re able to use the == operator to compare two Record types, just like you
can with String or Int:

recordA == recordB // true

Comparable
A subprotocol of Equatable is Comparable:

protocol Comparable: Equatable {
 static func <(lhs: Self, rhs: Self) -> Bool
 static func <=(lhs: Self, rhs: Self) -> Bool
 static func >=(lhs: Self, rhs: Self) -> Bool
 static func >(lhs: Self, rhs: Self) -> Bool
}

Swift Apprentice Chapter 16: Protocols

raywenderlich.com 315

In addition to the equality operator ==, Comparable requires you to overload the
comparison operators <, <=, > and >= for your type. In practice, you’ll usually only
provide <, as the standard library can implement <=, > and >= for you, using your
implementations of == and <.

Make Record adopt Comparable as shown below:

extension Record: Comparable {
 static func <(lhs: Record, rhs: Record) -> Bool {
 if lhs.wins == rhs.wins {
 return lhs.losses > rhs.losses
 }
 return lhs.wins < rhs.wins
 }
}

This implementation of < considers one record lesser than another record if the first
record either has fewer wins than the second record, or an equal number of wins but
a greater number of losses.

“Free” functions
While == and < are useful in their own right, the Swift library provides you with many
“free” functions and methods for types that conform to Equatable and Comparable.

For any collection you define that contains a Comparable type, such as an Array, you
have access to methods such as sort() that are part of the standard library:

let teamA = Record(wins: 14, losses: 11)
let teamB = Record(wins: 23, losses: 8)
let teamC = Record(wins: 23, losses: 9)
var leagueRecords = [teamA, teamB, teamC]

leagueRecords.sort()
// {wins 14, losses 11}
// {wins 23, losses 9}
// {wins 23, losses 8}

Since you’ve given Record the ability to compare two values, the standard library has
all the information it needs to sort an array of Records! As you can see,
implementing Comparable and Equatable gives you quite an arsenal of tools:

leagueRecords.max() // {wins 23, losses 8}
leagueRecords.min() // {wins 14, losses 11}
leagueRecords.starts(with: [teamA, teamC]) // true
leagueRecords.contains(teamA) // true

Swift Apprentice Chapter 16: Protocols

raywenderlich.com 316

Other useful protocols
While learning the entire Swift standard library isn’t vital to your success as a Swift
developer, there are a few other important protocols you’ll find useful in almost any
project.

Hashable

The Hashable protocol, a subprotocol of Equatable, is a requirement for any type
you want to use as a key to a Dictionary. For value types (structs, enums) the
compiler will generate Equatable and Hashable conformance for you automatically,
but you will need to do it yourself for reference (class) types. Fortunately, it is easy.

Hash values help you quickly find elements in a collection. In order for this to work,
values that are considered equal by == must also have the same hash value. Because
the number of hash values is limited, there’s a finite probability that non-equal
values can have the same hash. The mathematics behind hash values are quite
complex, but you can let Swift handle the details for you. Just make sure that
everything that you include in the == comparison is also combined using the hasher.

For example:

class Student {
 let email: String
 let firstName: String
 let lastName: String

 init(email: String, firstName: String, lastName: String) {
 self.email = email
 self.firstName = firstName
 self.lastName = lastName
 }
}

extension Student: Hashable {
 static func ==(lhs: Student, rhs: Student) -> Bool {
 lhs.email == rhs.email &&
 lhs.firstName == rhs.firstName &&
 lhs.lastName == rhs.lastName
 }

 func hash(into hasher: inout Hasher) {
 hasher.combine(email)
 hasher.combine(firstName)
 hasher.combine(lastName)
 }
}

Swift Apprentice Chapter 16: Protocols

raywenderlich.com 317

You use email, firstName and lastName as the basis for equality. A good
implementation of hash would be to use all of these properties by combining them
using the Hasher type passed in. The hasher does the heavy lifting of properly
composing the values.

You can now use the Student type as the key in a Dictionary:

let john = Student(email: "johnny.appleseed@apple.com",
 firstName: "Johnny",
 lastName: "Appleseed")
let lockerMap = [john: "14B"]

CustomStringConvertible

The very handy CustomStringConvertible protocol helps you log and debug
instances.

When you call print() on an instance such as a Student, Swift prints a vague
description:

print(john)
// Student

As if you didn’t already know that! The CustomStringConvertible protocol has
only a description property requirement. This property customizes how the
instance appears in print() statements and in the debugger:

protocol CustomStringConvertible {
 var description: String { get }
}

By adopting CustomStringConvertible on the Student type, you can provide a
more readable representation.

extension Student: CustomStringConvertible {
 var description: String {
 "\(firstName) \(lastName)"
 }
}
print(john)
// Johnny Appleseed

CustomDebugStringConvertible is similar to CustomStringConvertible: It
behaves exactly like CustomStringConvertible except it also defines a
debugDescription. Use CustomDebugStringConvertible along with
debugPrint() to print to the output only in debug configurations.

Swift Apprentice Chapter 16: Protocols

raywenderlich.com 318

Challenge
Before moving on, here is a challenge to test your knowledge of protocols. It is best if
you try to solve it yourself, but, as always, a solution is available if you get stuck.

Pet shop tasks
Create a collection of protocols for tasks at a pet shop that has dogs, cats, fish and
birds.

The pet shop duties can be broken down into these tasks:

• All pets need to be fed.

• Pets that can fly need to be caged.

• Pets that can swim need to be put in a tank.

• Pets that walk need exercise.

• Tanks and cages need to occasionally be cleaned.

1. Create classes or structs for each animal and adopt the appropriate protocols.
Feel free to simply use a print() statement for the method implementations.

2. Create homogeneous arrays for animals that need to be fed, caged, cleaned,
walked, and tanked. Add the appropriate animals to these arrays. The arrays
should be declared using the protocol as the element type, for example var
caged: [Cageable]

3. Write a loop that will perform the proper tasks (such as feed, cage, walk) on each
element of each array.

Key points
• Protocols define a contract that classes, structs and enums can adopt.

• By adopting a protocol, a type is required to conform to the protocol by
implementing all methods and properties of the protocol.

• A type can adopt any number of protocols, which allows for a quasi-multiple
inheritance not permitted through subclassing.

Swift Apprentice Chapter 16: Protocols

raywenderlich.com 319

• You can use extensions for protocol adoption and conformance.

• The Swift standard library uses protocols extensively. You can use many of them,
such as Equatable and Hashable, on your own named types.

Swift Apprentice Chapter 16: Protocols

raywenderlich.com 320

17Chapter 17: Generics

By Alexis Gallagher

The truth is, you already know about generics. Every time you use a Swift array,
you’re using generics. This might even give the impression that generics are about
collections, but that impression is both incorrect and misleading. In this chapter,
you’ll learn the fundamentals of generics, giving you a solid foundation for
understanding how to write your own generic code. Finally, you’ll loop back to look
at generic types in the Swift standard library — arrays, dictionaries and optionals —
using this new perspective.

raywenderlich.com 321

Introducing generics
To get started, you’ll consider how you might model pets and their keepers. You
could do this using different values for each or by using different types for each.
You’ll see that by using types, instead of values, the Swift type checker can reason
about your code at compile time. Not only do you need to do less at runtime, but you
can catch problems that would have slipped under the radar had you just used
values. Your code also runs faster.

Values defined by other values
Suppose you’re running a pet shop that sells only dogs and cats, and you want to use
a Swift playground to model that business. To start, you define a type, PetKind, that
can hold two possible values corresponding to the two kinds of pets that you sell:

enum PetKind {
 case cat
 case dog
}

So far, so good. Now suppose you want to model not just the animals but also the
employees, the pet keepers who look after the pets. Your employees are highly
specialized. Some keepers only look after cats, and others only dogs.

So you define a KeeperKind type, as follows:

struct KeeperKind {
 var keeperOf: PetKind
}

Then you can initialize a catKeeper and dogKeeper in the following way:

let catKeeper = KeeperKind(keeperOf: .cat)
let dogKeeper = KeeperKind(keeperOf: .dog)

There are two points to note about how you’re modeling your shop.

First, you’re representing the different kinds of pets and keepers by varying the values
of types. There’s only one type for pet kinds — PetKind — and one type for keeper
kinds — KeeperKind. Different kinds of pets are represented only by distinct values
of the PetKind type, just as different kinds of keepers are represented by distinct
values of the KeeperKind type.

Swift Apprentice Chapter 17: Generics

raywenderlich.com 322

Second, one range of possible values determines another range of possible values.
Specifically, the range of possible KeeperKind values mirrors the range of possible
PetKind values.

If your store started selling birds, you’d simply add a .bird member to the PetKind
enumeration, and you’d immediately be able to initialize a value describing a bird
keeper, KeeperKind(keeperOf: .bird). And if you started selling a hundred
different kinds of pets, you’d immediately be able to represent a hundred different
kinds of keepers.

In contrast, you could have defined a second unrelated enumeration instead of
KeeperKind:

enum EnumKeeperKind {
 case catKeeper
 case dogKeeper
}

In this case, nothing would enforce this relationship except your diligence in always
updating one type to mirror the other. If you added PetKind.snake but forgot to add
EnumKeeperKind.snakeKeeper, then things would get out of whack.

But with KeeperKind, you explicitly established the relationship via a property of
type PetKind. Every possible PetKind value implies a corresponding KeeperKind
value. Or you could say, the set of possible PetKind values defines the set of possible
KeeperKind values.

To summarize, you can depict the relationship like so:

Types defined by other types
The model above fundamentally works by varying the values of types. Now consider
another way to model the pet-to-keeper system — by varying the types themselves.

Suppose that instead of defining a single type PetKind that represents all kinds of
pets, you chose to define a distinct type for every kind of pet you sell.

Swift Apprentice Chapter 17: Generics

raywenderlich.com 323

This is quite a plausible choice if you’re working in an object-oriented style, where
you model the pets’ behaviors with different methods for each pet. Then you’d have
the following:

class Cat {}
class Dog {}

Now how do you represent the corresponding kinds of keepers? You could simply
write the following:

class KeeperForCats {}
class KeeperForDogs {}

But that’s no good. This approach has exactly the same problem as manually defining
a parallel enum of KeeperKind values — it relies on you to enforce the required
domain relationship of one kind of keeper for every kind of pet.

What you’d really like is a way to declare a relationship just like the one you
established for values.

You’d like to declare that every possible pet type implies the existence of a
corresponding keeper type, a correspondence that you’d depict like so:

You’d like to establish that for every possible pet type, there is defined a
corresponding Keeper type. But you don’t want to do this manually. You want a way
to automatically define a set of new types for all the keepers.

This, it turns out, is exactly what generics are for!

Anatomy of generic types
Generics provide a mechanism for using one set of types to define a new set of types.

In your example, you can define a generic type for keepers, like so:

class Keeper<Animal> {}

Swift Apprentice Chapter 17: Generics

raywenderlich.com 324

This definition immediately defines all the corresponding keeper types, as desired:

You can verify these types are real by creating values of them, specifying the entire
type in the initializer:

var aCatKeeper = Keeper<Cat>()

What’s going on here? First, Keeper is the name of a generic type.

But you might say that a generic type isn’t really a type at all. It’s more like a recipe
for making real types, or concrete types. One sign of this is the error you get if you
try to instantiate it in isolation:

var aKeeper = Keeper() // compile-time error!

The compiler complains here because it doesn’t know what kind of keeper you want.
That Animal in angle brackets is the type parameter that specifies the type for the
kind of animal you’re keeping.

Once you provide the required type parameter, as in Keeper<Cat>, the generic
Keeper becomes a new concrete type. Keeper<Cat> is different from Keeper<Dog>,
even though they started from the same generic type. These resulting concrete types
are called specializations of the generic type.

To summarize the mechanics, in order to define a generic type like Keeper<Animal>
you only need to choose the name of the generic type and of the type parameter. The
name of the type parameter should clarify the relationship between the type
parameter and the generic type. You’ll encounter names like T (short for Type) from
time to time, but these names should be avoided when the type parameter has a clear
role such as Animal.

In one stroke, the generic type Keeper<Animal> defines a family of new types. Those
are all the specializations of Keeper<Animal> implied by all possible concrete types
that one could substitute for the type parameter Animal.

Notice that the type Keeper doesn’t currently store anything at all, or even use the
type Animal in any way. Essentially, generics are a way to systematically define sets
of types.

Swift Apprentice Chapter 17: Generics

raywenderlich.com 325

Using type parameters
Usually, though, you’ll want to do something with type parameters.

Suppose you want to keep better track of individuals. First, you enrich your type
definitions to include identifiers, such as names. This lets every value represent the
identity of an individual animal or keeper:

class Cat {
 var name: String

 init(name: String) {
 self.name = name
 }
}

class Dog {
 var name: String

 init(name: String) {
 self.name = name
 }
}

class Keeper<Animal> {
 var name: String

 init(name: String) {
 self.name = name
 }
}

You also want to track which keeper looks after which animals. Suppose every keeper
is responsible for one animal in the morning and another in the afternoon. You can
express this by adding properties for the morning and afternoon animals. But what
type should those properties have?

Clearly, if a particular keeper only manages dogs, then the properties must only hold
dogs. And if cats, then cats. In general, if it’s a keeper of Animal, then the morning
and afternoon animal properties should be of type Animal.

To express this, you merely need to use the type parameter that previously only
distinguished the nature of your keeper types:

class Keeper<Animal> {
 var name: String
 var morningCare: Animal
 var afternoonCare: Animal

Swift Apprentice Chapter 17: Generics

raywenderlich.com 326

 init(name: String, morningCare: Animal, afternoonCare: Animal)
{
 self.name = name
 self.morningCare = morningCare
 self.afternoonCare = afternoonCare
 }
}

By using Animal in the body of the generic type definition above, you can express
that the morning and afternoon animals must be the kind of animal the keeper
knows best.

Just as function parameters become constants to use within the body of your
function definition, you can use type parameters such as Animal throughout your
type definitions. You can use the type parameter anywhere in the definition of
Keeper<Animal> for stored properties as well as for computed properties, method
signatures or nested types.

Now when you instantiate a Keeper, Swift will make sure, at compile time, that the
morning and afternoon types are the same:

let jason = Keeper(name: "Jason",
 morningCare: Cat(name: "Whiskers"),
 afternoonCare: Cat(name: "Sleepy"))

Here, the keeper Jason manages the cat Whiskers in the morning and the cat Sleepy
in the afternoon. The type of jason is Keeper<Cat>. Note that you did not have to
specify a value for the type parameter.

Because you used instances of Cat as the values for morningCare and
afternoonCare, Swift knows the type of jason should be Keeper<Cat>.

Mini-exercises
• Try instantiating another Keeper but this time for dogs.

• What do you think would happen if you tried to instantiate a Keeper with a dog in
the morning and a cat in the afternoon?

• What happens if you try to instantiate a Keeper, but for strings?

Type constraints
In your definition of Keeper, the identifier Animal serves as a type parameter, which
is a named placeholder for some actual type that will be supplied later.

Swift Apprentice Chapter 17: Generics

raywenderlich.com 327

This is much like the parameter cat in a simple function like func feed(cat: Cat)
{ /* open can, etc... */ }. But when calling this function, you can’t simply
pass any argument to the function. You can only pass values of type Cat.

At present, you could offer any type at all as the kept Animal, even something
nonsensically unlike an animal, like a String or Int.

This is no good. What you’d like is something analogous to a function, something
where you can restrict what kinds of types are allowed to fill the type parameter. In
Swift, you do this with various kinds of type constraints.

The simple kind of type constraint applies directly to a type parameter, and it looks
like this:

class Keeper<Animal: Pet> {
 /* definition body as before */
}

Here, the constraint : Pet requires that the type assigned to Animal must be a
subclass of Pet, if Pet is a class, or must implement the Pet protocol, if Pet is a
protocol.

For instance, you can enforce these restrictions by using the revised Keeper
definition above while also redefining Cat and other animals to implement Pet, or
retro-actively model conformance to the protocol using an extension.

protocol Pet {
 var name: String { get } // all pets respond to a name
}
extension Cat: Pet {}
extension Dog: Pet {}

This works because Cat and Dog already implement a name stored property.

The other, more complex and general kind of type constraint uses a generic where
clause. This clause can constrain type parameters as well as associated types, letting
you define rich relationships on top of generic types.

Furthermore, you can attach this where clause to extensions as well. To demonstrate
this, suppose you want all Cat arrays to support the method meow().

You can use an extension to specify that when the array’s Element is a Cat the array
provides meow():

extension Array where Element: Cat {
 func meow() {

Swift Apprentice Chapter 17: Generics

raywenderlich.com 328

 forEach { print("\($0.name) says meow!") }
 }
}

You can even specify that a type should conform to some protocol only if it meets
certain constraints. Suppose that anything that can meow is a Meowable. You could
write that every Array is Meowable if its elements are, as follows:

protocol Meowable {
 func meow()
}

extension Cat: Meowable {
 func meow() {
 print("\(self.name) says meow!")
 }
}

extension Array: Meowable where Element: Meowable {
 func meow() {
 forEach { $0.meow() }
 }
}

This is called conditional conformance, a subtle but powerful mechanism of
composition.

Arrays
While the original Keeper type illustrates that a generic type doesn’t need to store
anything or use its type parameter, the most common example of a generic type does
both. This is, of course, the Array type.

The need for generic arrays was part of the original motivation to invent generic
types. Since so many programs need arrays which are homogeneous, generic arrays
make all that code safer. Once the compiler infers (or is told) the type of an array’s
elements at one point in the code, it can spot any deviations at other points in the
code before the program ever runs.

You’ve been using Array all along, but only with a syntactic sugar: [Element]
instead of Array<Element>. Consider an array declared like so:

let animalAges: [Int] = [2,5,7,9]

Swift Apprentice Chapter 17: Generics

raywenderlich.com 329

This is equivalent to the following:

let animalAges: Array<Int> = [2,5,7,9]

Array<Element> and [Element] are exactly interchangeable. So you could even call
an array’s default initializer by writing [Int]() instead of Array<Int>().

Since Swift arrays simply allow indexed access to a sequence of elements, they
impose no requirements on their Element type. But this isn’t always the case.

Dictionaries
Swift generics allow for multiple type parameters and for complex sets of restrictions
on them. These let you use generic types and protocols with associated types to
model complex algorithms and data structures. A Dictionary is a straightforward
example of this.

Dictionary has two type parameters in the comma-separated generic parameter list
that falls between the angle brackets, as you can see in its declaration:

struct Dictionary<Key: Hashable, Value> // etc..

Key and Value represent the types of the dictionary’s keys and values. The type
constraint Key: Hashable requires that any type serving as the key for the
dictionary be hashable, because the dictionary is a hash map and must hash its keys
to enable fast lookup.

To instantiate types such as Dictionary with multiple type parameters, simply
provide a comma-separated type argument list:

let intNames: Dictionary<Int, String> = [42: "forty-two"]

As with arrays, dictionaries get some special treatment in Swift since they’re built-in
and rather common. You’ve already seen the shorthand notation [Key: Value], and
you can also use type inference:

let intNames2: [Int: String] = [42: "forty-two", 7: "seven"]
let intNames3 = [42: "forty-two", 7: "seven"]

Swift Apprentice Chapter 17: Generics

raywenderlich.com 330

Optionals
Finally, no discussion of generics would be complete without mentioning optionals.
Optionals are implemented as enumerations, but they’re also just another generic
type, which you could have defined yourself.

Suppose you were writing an app that let a user enter her birthdate in a form, but
didn’t require it. You might find it handy to define an enum type, as follows:

enum OptionalDate {
 case none
 case some(Date)
}

Similarly, if another form allowed but didn’t require the user to enter her last name,
you might define the following type:

enum OptionalString {
 case none
 case some(String)
}

Then you could capture all the information a user did or did not enter into a struct
with properties of those types:

struct FormResults {
 // other properties here
 var birthday: OptionalDate
 var lastName: OptionalString
}

And if you found yourself doing this repeatedly for new types of data the user might
not provide, then at some point you’d want to generalize this into a generic type that
represented the concept of “a value of a certain type that might be present”.
Therefore, you’d write the following:

enum Optional<Wrapped> {
 case none
 case some(Wrapped)
}

At this point, you would have reproduced Swift’s own Optional<Wrapped> type,
since this is quite close to the definition in the Swift standard library! It turns out,
Optional<Wrapped> is close to being a plain old generic type, like one you could
write yourself.

Swift Apprentice Chapter 17: Generics

raywenderlich.com 331

Why “close”? It would only be a plain old generic type if you interacted with
optionals only by writing out their full types, like so:

var birthdate: Optional<Date> = .none
if birthdate == .none {
 // no birthdate
}

But, of course, it’s more common and conventional to write something like this:

var birthdate: Date? = nil
if birthdate == nil {
 // no birthdate
}

In fact, those two code blocks say exactly the same thing. The second relies on
special language support for optionals: the Wrapped? shorthand syntax for
specifying the optional type Optional<Wrapped>, and nil, which can stand for
the .none value of an Optional<Wrapped> specialized on any type.

As with arrays and dictionaries, optionals get a privileged place in the language with
this syntax to make using them more concise. But all of these features provide more
convenient ways to access the underlying type, which is simply a generic
enumeration type.

Generic function parameters
Functions can be generic as well. A function’s type parameter list comes after the
function name. You can then use the generic parameters in the rest of the definition.

This function takes two arguments and swaps their order:

func swapped<T, U>(_ x: T, _ y: U) -> (U, T) {
 (y, x)
}

swapped(33, "Jay") // returns ("Jay", 33)

A generic function definition demonstrates a confusing aspect about the syntax:
having both type parameters and function parameters. You have both the generic
parameter list of type parameters <T, U>, and the list of function parameters (_ x:
T, _ y: U).

Swift Apprentice Chapter 17: Generics

raywenderlich.com 332

Think of the type parameters as arguments for the compiler, which it uses to define
one possible function. Just as your generic Keeper type meant the compiler could
make dog keepers and cat keepers and any other kind of keeper, the compiler can
now make a non-generic specialized swapped function for any two types for you to
use.

Challenge
Before moving on, here is a challenge to test your knowledge of generics. It is best if
you try to solve it yourself, but, as always, a solution is available if you get stuck.

Build a collection
Consider the pet and keeper example from earlier in the chapter:

class Cat {
 var name: String

 init(name: String) {
 self.name = name
 }
}

class Dog {
 var name: String

 init(name: String) {
 self.name = name
 }
}

class Keeper<Animal> {
 var name: String
 var morningCare: Animal
 var afternoonCare: Animal

 init(name: String, morningCare: Animal, afternoonCare: Animal)
{
 self.name = name
 self.morningCare = morningCare
 self.afternoonCare = afternoonCare
 }
}

Imagine that instead of looking after only two animals, every keeper looks after a
changing number of animals throughout the day. It could be one, two, or ten animals

Swift Apprentice Chapter 17: Generics

raywenderlich.com 333

per keeper instead of just morning and afternoon ones. You’d have to do things like
the following:

let christine = Keeper<Cat>(name: "Christine")

christine.lookAfter(someCat)
christine.lookAfter(anotherCat)

You’d want to be able to access the count of all of animals for a keeper like
christine.countAnimals and to access the 51st animal via a zero-based index like
christine.animalAtIndex(50).

Of course, you’re describing your old friend the array type, Array<Element>!

Your challenge is to update the Keeper type to have this kind of interface. You’ll
probably want to include a private array inside Keeper, and then provide methods
and properties on Keeper to allow outside access to the array.

Key points
• Generics are everywhere in Swift: in optionals, arrays, dictionaries, other

collection structures, and most basic operators like + and ==.

• Generics express systematic variation at the level of types via type parameters
that range over possible concrete types.

• Generics are like functions for the compiler. They are evaluated at compile time and
result in new types which are specializations of the generic type.

• A generic type is not a real type on its own, but more like a recipe, program, or
template for defining new types.

• Swift provides a rich system of type constraints, which lets you specify what types
are allowed for various type parameters.

Swift Apprentice Chapter 17: Generics

raywenderlich.com 334

Section IV: Advanced Topics

You’ve made it to the final section of this book! In this section, you’ll delve into some
important but more advanced topics to round out your Swift apprenticeship:

• Chapter 18, Access Control and Code Organization: Swift gives you powerful
tools for hiding complexity and organizing your code into easier to digest units
that you can share with others. This chapter details how to do that.

• Chapter 19, Custom Operators, Subscripts, Keypaths: You’ll learn how you can
define your own operators and subscripts to make your types feel even more like
built-in language constructs. You will also learn about type-safe keypaths
introduced in Swift 4.

• Chapter 20, Pattern Matching: With pattern matching you can accomplish more
— with less typing. You’ll master all of its many forms in this chapter.

• Chapter 21, Error Handling: In the real world, some errors cannot be avoided.
Handling them gracefully is what sets apart mediocre code from great code.

• Chapter 22, Encoding and Decoding Types: You will learn about the type
serialization system introduced in Swift 4 with particular emphasis on the JSON
format.

• Chapter 23, Memory Management: This chapter digs into the details of Swift
memory management examining the relation between objects. It shows you how
you avoid common leaks.

• Chapter 24, Value Types and Reference Types: Value semantics have a clear
advantage over reference semantics in terms of the local reasoning but can lead to
inefficiency for large objects. This chapter shows you how to get the best of both
worlds.

• Chapter 25, Protocol-Oriented Programming: From the standard library to user
authored generics, Swift is a protocol-based language. In this chapter you’ll see
how to get all of the benefits associated with object-oriented programming while
being able to avoid most of the difficulties.

raywenderlich.com 335

• Chapter 26, Advanced Protocols and Generics: Learn how to use constraints to
make generic code more useful and how to hide implementation details with
opaque return types.

Swift Apprentice Section IV: Advanced Topics

raywenderlich.com 336

18Chapter 18: Access Control,
Code Organization and
Testing
By Eli Ganim

Swift types can be declared with properties, methods, initializers and even other
nested types. These elements can be thought of as the interface to your code and is
sometimes referred to as the API or Application Programming Interface.

As code grows in complexity, controlling this interface becomes an important part of
software design. You may wish to create methods that serve as “helpers” to your
code, or properties that are designed to keep track of internal states that you don’t
want as part of your code’s interface.

Swift solves these problems with a feature area known as access control, which lets
you control the viewable interface of your code. Access control lets you, the library
author, hide implementation complexity from users.

This hidden internal state is sometimes referred to as the invariant, which your
public interface should always maintain. Preventing direct access to the internal
state of a model and maintaining the invariant is a fundamental software design
concept known as encapsulation. In this chapter, you will learn what access control
is, the problems it solves, and how to apply it.

raywenderlich.com 337

Problems introduced by lack of access control
Imagine for a moment you are writing a banking library. This library would help
serve as the foundation for your customers (other banks) to write their banking
software.

In a playground, start with the following protocol:

/// A protocol describing core functionality for an account
protocol Account {
 associatedtype Currency

 var balance: Currency { get }
 func deposit(amount: Currency)
 func withdraw(amount: Currency)
}

This code contains Account, a protocol that describes what any account should have
— the ability to deposit, withdraw, and check the balance of funds.

Now add a conforming type with the code below:

typealias Dollars = Double

/// A U.S. Dollar based "basic" account.
class BasicAccount: Account {

 var balance: Dollars = 0.0

 func deposit(amount: Dollars) {
 balance += amount
 }

 func withdraw(amount: Dollars) {
 if amount <= balance {
 balance -= amount
 } else {
 balance = 0
 }
 }
}

This conforming class, BasicAccount, implements deposit(amount:) and
withdraw(amount:) by simply adding or subtracting from the balance (typed in
Dollars, an alias for Double). Although this code is very straightforward, you may
notice a slight issue. The balance property in the Account protocol is designed to be
read-only — in other words, it only has a get defined.

Swift Apprentice Chapter 18: Access Control, Code Organization and Testing

raywenderlich.com 338

However, the implementation of BasicAccount requires balance to be declared as a
variable so that the value can be updated when funds are deposited or withdrawn.

Nothing can prevent other code from directly assigning new values for balance:

// Create a new account
let account = BasicAccount()

// Deposit and withdraw some money
account.deposit(amount: 10.00)
account.withdraw(amount: 5.00)

// ... or do evil things!
account.balance = 1000000.00

Oh no! Even though you carefully designed the Account protocol to only be able to
deposit or withdraw funds, the implementation details of BasicAccount that allow
it to update its own balance could be used by any code.

Fortunately, you can use access control to limit the scope at which your code is
visible to other types, files or even software modules!

Note: Access control is not a security feature that protects your code from
malicious hackers. Rather, it lets you express intent by generating helpful
compiler errors if a user attempts directly access implementation details that
may compromise the invariant, and therefore, correctness.

Introducing access control
You can add access modifiers by placing a modifier keyword in front of a property,
method or type declaration.

Add the access control modifier private(set) to the definition of balance in
BasicAccount:

private(set) var balance: Dollars

The access modifier above is placed before the property declaration, and includes an
optional get/set modifier in parentheses. In this example, the setter of balance is
made private.

Swift Apprentice Chapter 18: Access Control, Code Organization and Testing

raywenderlich.com 339

You’ll cover the details of private shortly, but you can see it in action already: your
code no longer compiles!

By adding private to the property setter, the property has been made inaccessible to
the consuming code.

This demonstrates the fundamental benefit of access modifiers: access is restricted
to code that needs or should have access, and restricted from code that doesn’t.
Effectively, access control allows you to control the code’s accessible interface while
defining whatever properties, methods or types you need to implement the behavior
you want.

The private modifier used in the brief example above is one of several access
modifiers available to you in Swift:

• private: Accessible only to the defining type, all nested types and extensions on
that type within the same source file.

• fileprivate: Accessible from anywhere within the source file in which it’s
defined.

• internal: Accessible from anywhere within the module in which it’s defined. This
is the default access level.

• public: Accessible from anywhere within the module in which it is defined, as well
as another software module that imports this module.

• open: The same as public, with the additional ability of being able to be
overridden by code in another module.

Next, you will learn more about these modifiers, when to use them, and how to apply
them to your code.

Private
The private access modifier restricts access to the entity it is defined in, as well as
any nested type within it — also known as the “lexical scope”. Extensions on the type
within the same source file can also access the entity.

Swift Apprentice Chapter 18: Access Control, Code Organization and Testing

raywenderlich.com 340

To demonstrate, continue with your banking library by extending the behavior of
BasicAccount to make a CheckingAccount:

class CheckingAccount: BasicAccount {
 private let accountNumber = UUID().uuidString

 class Check {
 let account: String
 var amount: Dollars
 private(set) var cashed = false

 func cash() {
 cashed = true
 }

 init(amount: Dollars, from account: CheckingAccount) {
 self.amount = amount
 self.account = account.accountNumber
 }
 }
}

CheckingAccount has an accountNumber declared as private. CheckingAccount
also has a nested type Check that can read the private value of accountNumber in
its initializer.

Note: In this example, the UUID class is used to generate unique account
numbers. This class is part of Foundation, so don’t forget to import it!

Checking accounts should be able to write and cash checks as well. Add the following
methods to CheckingAccount:

func writeCheck(amount: Dollars) -> Check? {
 guard balance > amount else {
 return nil
 }

 let check = Check(amount: amount, from: self)
 withdraw(amount: check.amount)
 return check
}

func deposit(_ check: Check) {
 guard !check.cashed else {
 return
 }

Swift Apprentice Chapter 18: Access Control, Code Organization and Testing

raywenderlich.com 341

 deposit(amount: check.amount)
 check.cash()
}

While CheckingAccount can still make basic deposits and withdrawals, it can now
also write and deposit checks! The method writeCheck(amount:) checks for
sufficient balance before withdrawing the amount and creating the check, and
deposit(_:) will not deposit the check if it has already been cashed.

Give this code a try in your playground by having John write a check to Jane:

// Create a checking account for John. Deposit $300.00
let johnChecking = CheckingAccount()
johnChecking.deposit(amount: 300.00)

// Write a check for $200.00
let check = johnChecking.writeCheck(amount: 200.0)!

// Create a checking account for Jane, and deposit the check.
let janeChecking = CheckingAccount()
janeChecking.deposit(check)
janeChecking.balance // 200.00

// Try to cash the check again. Of course, it had no effect on
// Jane’s balance this time :]
janeChecking.deposit(check)
janeChecking.balance // 200.00

This code works great, of course; the real story is what this code can’t do. Remember
that access control lets you control the interface to your code. Look at what the
autocomplete window shows as the interface for CheckingAccount:

The accountNumber is treated as an implementation detail of CheckingAccount, and
isn’t visible to consuming code.Likewise, Check makes the setter for cashed private
and requires consumers to use cash() instead:

Swift Apprentice Chapter 18: Access Control, Code Organization and Testing

raywenderlich.com 342

This interface gives Check a way for consumers to mark a check as cashed, but not
the other way around! In other words, it is not possible to un-cash a check.

Finally, even though accountNumber was not visible on CheckingAccount, the
number is made accessible by anyone holding a Check:

While the account property got its value from the CheckingAccount, that’s but
another implementation detail. The important thing is that access modifiers let the
code shape its own interface regardless of the code used to implement it.

Playground sources
Before jumping into the rest of this chapter, you’ll need to learn a new feature of
Swift playgrounds: source files.

In Xcode, make sure the Project Navigator is visible by going to
View\Navigators\Show Project Navigator. Under the playground tree look for a
slightly dimmed folder named Sources:

Right-click on the folder, select New File and name the file Account.swift. Move the
Account protocol, the BasicAccount class, and the Dollars typealias to this file.

Swift Apprentice Chapter 18: Access Control, Code Organization and Testing

raywenderlich.com 343

Create one more source file and name it Checking.swift. Move CheckingAccount
into this file.

That’s it! The important things to note about the Sources folder is that the code
within it is treated as a separate module from the code within your playground.

You can comment out the rest of the code in your playground for now. It won’t be
able to “see” the code you just moved until later in this chapter.

Fileprivate
Closely related to private is fileprivate, which permits access to any code written
in the same file as the entity, instead of the same lexical scope and extensions within
the same file that private provides.

You’ll use the two new files you just created to try this out!

Right now, nothing is preventing a haphazard coder who doesn’t read the
documentation from creating a Check on their own. In your safe code, you want a
Check to only originate from CheckingAccount so that it can keep track of balances.

In the Check class, try adding the private modifier to the initializer:

private init(amount: Dollars, from account: CheckingAccount)
{ //...

While this prevents bad code from creating a Check, you’ll notice it also prevents
CheckingAccount from creating one as well. private entities can be accessed from
anything within lexical scope, but in this case CheckingAccount is one step outside
the scope of Check. Fortunately, this is where fileprivate is very useful.

Replace the initializer instead with fileprivate:

fileprivate init(amount: Dollars, from account: CheckingAccount)
{ //...

Great! Now CheckingAccount can still write checks, but you can’t create them from
anywhere else.

The fileprivate modifier is ideal for code that is “cohesive” within a source file;
that is, code that is closely related or serves enough of a common purpose to have
shared but protected access. Check and CheckingAccount are examples of two
cohesive types.

Swift Apprentice Chapter 18: Access Control, Code Organization and Testing

raywenderlich.com 344

Internal, public and open
With private and fileprivate you were able to protect code from being accessed
by other types and files. These access modifiers modified access from the default
access level of internal.

The internal access level means that an entity can be accessed from anywhere
within the software module in which it’s defined. To this point in the book, you’ve
written all of your code in a single playground file, which means it’s all been in the
same module.

When you added code to the Sources directory in your playground, you effectively
created a module that your playground consumed. The way playgrounds are designed
in Xcode, all files in the Sources directory are part of one module, and everything in
the playground is another module that consumes the module in the Sources folder.

Internal

Back in your playground, uncomment the code that handles John writing checks to
Jane:

// Create a checking account for John. Deposit $300.00
let johnChecking = CheckingAccount()
johnChecking.deposit(amount: 300.00)
// ...

Because CheckingAccount has no access modifier specified, it is treated as
internal, so it is inaccessible to the playground that consumes the module in which
it’s defined.

The result is that Swift displays a build error trying to use the CheckingAccount
type.

To remedy this, you will have to learn about the public and open access modifiers.

Note: Because internal is the default access level, you never need to
explicitly declare your code internal. Whether you use internal keyword in
your definitions is a matter of style and preference.

Swift Apprentice Chapter 18: Access Control, Code Organization and Testing

raywenderlich.com 345

Public

To make CheckingAccount visible to your playground, you’ll need to change the
access level from internal to public. An entity that is public can be seen and used
by code outside the module in which it’s defined.

Add the public modifier to class CheckingAccount:

public class CheckingAccount: BasicAccount {

You’ll also need to add public to BasicAccount since CheckingAccount subclasses
it:

public class BasicAccount: Account

The playground will now recognize CheckingAccount, yet you’re still not able to
instantiate it.

While the type itself is now public, its members are still internal and thus
unavailable outside of the module. You’ll need to add public modifiers to all the
entities you want to be part of your module’s interface.

Start by adding a public initializer to BasicAccount and CheckingAccount:

// In BasicAccount:
public init() { }

// In CheckingAccount:
public override init() { }

Next, in BasicAccount, add public to balance, deposit(amount:) and
withdraw(amount:). You’ll also need to make the Dollars typealias public, as this
typealias is now used in public methods.

Finally, in CheckingAccount, add public to writeCheck(amount:), deposit(_:)
and class Check. Save all files. You’ll find that everything builds and runs!

Note: Even though BasicAccount adopts Account, you may notice that the
playground can’t see Account, nor does it know that BasicAccount conforms
to it. Protocol conformance will be invisible to consuming modules if the
protocol itself is not accessible.

Swift Apprentice Chapter 18: Access Control, Code Organization and Testing

raywenderlich.com 346

Open

Now that CheckingAccount and its public members are visible to the playground,
you can use your banking interface as designed.

Well — almost! The banking library should provide a set of common accounts such as
checking accounts, but also be open to extensibility for any special kind of account a
bank may have.

In your playground, create an interest-accumulating SavingsAccount that
subclasses BasicAccount:

class SavingsAccount: BasicAccount {
 var interestRate: Double

 init(interestRate: Double) {
 self.interestRate = interestRate
 }

 func processInterest() {
 let interest = balance * interestRate
 deposit(amount: interest)
 }
}

While BasicAccount is declared public and is accessible to the playground, Swift
will show a build error when trying to subclass BasicAccount:

For a class, method or property to be overridden by code in another module, it is
required to be declared open. Open Account.swift and replace the public access
modifier for class BasicAccount with open:

open class BasicAccount: Account { //..

Do you see it all coming together? The interfaces you’ve crafted using public and
open permit subclassing of BasicAccount to provide new types of accounts.
withdraw(amount:) and deposit(amount:), because they’re public, can be used by
those subclasses. The implementations of withdraw(amount:) and
deposit(amount:) are safe from being overridden because they’re only public, not
open!

Imagine if you could override withdraw(amount:) and deposit(amount:):

override func deposit(amount: Dollars) {
 // LOL

Swift Apprentice Chapter 18: Access Control, Code Organization and Testing

raywenderlich.com 347

 super.deposit(amount: 1_000_000.00)
}

Oh noes!

If you’re creating a library, you often want to restrict the ability to override methods
and properties so you can avoid otherwise surprising behavior. The open access
modifier allows you to explicitly control what other modules do to your code.

Mini-exercises
1. Create a struct Person in a new Sources file. This struct should have first, last

and fullName properties that are readable but not writable by the playground.

2. Create a similar type, except make it a class and call it ClassyPerson. In the
playground, subclass ClassyPerson with class Doctor and make a doctor’s
fullName print the prefix "Dr.".

Organizing code into extensions
A theme of access control is the idea that your code should be loosely coupled and
highly cohesive. Loosely coupled code limits how much one entity knows about
another, which in turn makes different parts of your code less dependent on others.
Highly cohesive code, as you learned earlier, helps closely related code work together
to fulfill a task.

Swift features such as access modifiers, when used with extensions, can help you
both organize your code as well as encourage good software design.

Extensions by behavior
An effective strategy in Swift is to organize your code into extensions by behavior.
You can even apply access modifiers to extensions themselves, which will help you
categorize entire sections of code as public, internal or private.

Begin by adding some basic fraud protection to CheckingAccount. Add the following
properties to CheckingAccount:

private var issuedChecks: [Int] = []
private var currentCheck = 1

These will keep track of checks that have been written by the checking account.

Swift Apprentice Chapter 18: Access Control, Code Organization and Testing

raywenderlich.com 348

Next, add the following private extension:

private extension CheckingAccount {
 func inspectForFraud(with checkNumber: Int) -> Bool {
 issuedChecks.contains(checkNumber)
 }

 func nextNumber() -> Int {
 let next = currentCheck
 currentCheck += 1
 return next
 }
}

CheckingAccount can use these two methods to determine the check number, as
well as confirm that it was, in fact, issued by the account.

Notably, this extension is marked private. A private extension implicitly marks all
of its members as private. These fraud protection tools are meant to be used by the
CheckingAccount only — you definitely don’t want other code incrementing the
currentCheck number! Putting these two methods together also connects two
related, cohesive methods. It’s clear to yourself and anyone else maintaining the
code that these two are cohesive and help solve a common task.

Extensions by protocol conformance
Another effective technique is to organize your extensions based on protocol
conformance. You’ve already seen this technique used in Chapter 16, “Protocols”. As
an example, let’s make CheckingAccount conform to CustomStringConvertible by
adding the following extension:

extension CheckingAccount: CustomStringConvertible {
 public var description: String {
 "Checking Balance: $\(balance)"
 }
}

This extension implements CustomStringConvertible, and more importantly:

• Makes it obvious description is part of CustomStringConvertible.

• Doesn’t help conform to other protocols.

• Can easily be removed without doing collateral damage to the rest of
CheckingAccount.

• Is easy to grok!

Swift Apprentice Chapter 18: Access Control, Code Organization and Testing

raywenderlich.com 349

available()
If you take a look at SavingsAccount, you’ll notice that you can abuse
processInterest() by calling it multiple times and adding interest to the account
repeatedly. To make this function more secure, you can add a PIN to the account.

Add a pin property to SavingsAccount, and make sure the initializer and
processInterest() method take this PIN as a parameter. The class should look like
this:

class SavingsAccount: BasicAccount {
 var interestRate: Double
 private let pin: Int

 init(interestRate: Double, pin: Int) {
 self.interestRate = interestRate
 self.pin = pin
 }

 func processInterest(pin: Int) {
 if pin == self.pin {
 let interest = balance * interestRate
 deposit(amount: interest)
 }
 }
}

You’re very happy with the new layer of security. However, after you send this
updated code to the bank, you get angry phone calls. The bank’s code now doesn’t
compile, because it was using your old SavingsAccount class.

To prevent breaking code that uses the old implementation, you need to deprecate
the code rather than replacing it. Luckily, Swift has built-in support for this.

Bring back the old implementation of the initializer and processInterest(), and
add this line of code before the initializer:

@available(*, deprecated, message: "Use init(interestRate:pin:)
instead")

And this line of code before processInterest():

@available(*, deprecated, message: "Use processInterest(pin:)
instead")

Swift Apprentice Chapter 18: Access Control, Code Organization and Testing

raywenderlich.com 350

Now these methods still work as expected, however Xcode generates a warning with
your custom message when someone tries to use them:

The asterisk in the parameters denotes which platforms are affected by this
deprecation. It accepts the values *, iOS, iOSMac, tvOS or watchOS. The second
parameter details whether this method is deprecated, renamed or unavailable.

Opaque return types
Imagine you need to create a public API for users of your banking library. You’re
required to create a function called createAccount that creates a new account and
returns it. One of the requirements of this API is to hide implementation details so
that clients are encouraged to write generic code. It means that you shouldn’t expose
the type of account you’re creating, be it a BasicAccount, CheckingAccount or
SavingsAccount. Instead you’ll just return some instance that conforms to the
protocol Account.

In order to enable that, you need to first make the Account protocol public. Open
Account.swift and add the public modifier before protocol Account. Now go back
to your playground and insert this code:

func createAccount() -> Account {
 CheckingAccount()
}

You’ll notice you get an error:

To solve this, you can add the keyword some before the return type, so it would look
like this:

func createAccount() -> some Account {
 CheckingAccount()
}

This is an opaque return type and it lets the function decide what type of Account it
wants to return without exposing the class type.

Swift Apprentice Chapter 18: Access Control, Code Organization and Testing

raywenderlich.com 351

You’ll learn more about this feature in Chapter 26, "Advanced Protocols and
Generics".

Swift Package Manager
Another powerful way to organize your code is to use Swift Package Manager, or
SwiftPM for short. SwiftPM lets you "package" your module so that you or other
developers can use it in their code with ease.

For example, a module that implements the logic of downloading images from the
web is useful in many projects. Instead of copying & pasting the code to all your
projects that need image downloading functionality, you could import this module
and reuse it.

Swift Package Manager is out of scope for this book, however you can read more
about it here: https://swift.org/package-manager/.

Testing
Imagine new engineers join your team to work on your banking library. These
engineers are tasked with updating the SavingsAccount class to support taking
loans. For that they will need to update the basic functionally of the code you’ve
written. This is risky, since they’re not familiar with the code and their changes
might introduce bugs to the existing logic. A good way to prevent this from
happening is to write unit tests.

Unit tests are pieces of code whose purpose is to test that your existing code works as
expected. For example, you might write a test that deposits $100 to a new account
and then verifies the balance is indeed $100.

It might sound like overkill at first, but when many engineers are working on a
codebase or when you go back to make changes to code you’ve written a long time
ago, unit tests help you verify that you don’t break anything.

Creating a test class
In order to write unit tests, you first need to import the XCTest framework. Add this
at the top of the playground:

import XCTest

Swift Apprentice Chapter 18: Access Control, Code Organization and Testing

raywenderlich.com 352

Next, you need to create a new class that’s a subclass of XCTestCase:

class BankingTests: XCTestCase {
}

Writing tests
Once you have your test class ready, it’s time to add some tests. Tests should cover
the core functionality of your code and some edge cases. The acronym FIRST
describes a concise set of criteria for effective unit tests. Those criteria are:

• Fast: Tests should run quickly.

• Independent/Isolated: Tests should not share state with each other.

• Repeatable: You should obtain the same results every time you run a test.

• Self-validating: Tests should be fully automated. The output should be either
“pass” or “fail”.

• Timely: Ideally, tests should be written before you write the code they test (Test-
Driven Development).

Adding tests to a test class is super easy - just add a function that starts with the
word test, takes no arguments and returns nothing.

func testSomething() {
}

Congratulations! You’ve just written your first test.

To actually run your tests in the playground, add this at the bottom, outside of the
BankingTests class.

BankingTests.defaultTestSuite.run()

Now run the playground and you’ll see something similar to this printed to the
console:

Test Suite 'BankingTests' started at ...
Test Case '-[__lldb_expr_2.BankingTests testSomething]' started.
Test Case '-[__lldb_expr_2.BankingTests testSomething]' passed
(0.837 seconds).
Test Suite 'BankingTests' passed at ...
 Executed 1 test, with 0 failures (0 unexpected) in 0.837
(0.840) seconds

Swift Apprentice Chapter 18: Access Control, Code Organization and Testing

raywenderlich.com 353

The test passed, which is unsurprising since it does nothing at the moment.

XCTAssert
XCTAssert functions are used in tests to assert certain conditions are met. For
example, you can verify that a certain value is greater than zero or that an object
isn’t nil. Here’s an example of how to check that a new account starts off with a
balance of zero. Replace the testSomething method with this:

func testNewAccountBalanceZero() {
 let checkingAccount = CheckingAccount()
 XCTAssertEqual(checkingAccount.balance, 0)
}

The method XCTAssertEqual verifies that the two parameters are equal, or else it
fails the test. Note how the name of the test explicitly states what it tests.

If you’ll run your playground now, this should appear in your console:

Test Case '-[__lldb_expr_4.BankingTests
testNewAccountBalanceZero]' started.
Test Case '-[__lldb_expr_4.BankingTests
testNewAccountBalanceZero]' passed (0.030 seconds).

Awesome, your test is passing! If someone makes changes that inadvertently cause
new accounts to start with a balance other than zero then the test would fail. Why
not test it? Open the file Account.swift, find this line

public private(set) var balance: Dollars = 0.0

and replace the 0.0 with 1.0. Now run the test in your playground and you should
see this printed to the console:

error: -[BankingTests testNewAccountBalanceZero] :
XCTAssertEqual failed: ("1.0") is not equal to ("0.0")

You can see the test fails and it even tells you why it failed! This is the true power of
unit tests. From now on, your accounts code is protected from this kind of mistakes.

Now go ahead and return the variable balance to be 0.0 and then add one more test:

func testCheckOverBudgetFails() {
 let checkingAccount = CheckingAccount()
 let check = checkingAccount.writeCheck(amount: 100)
 XCTAssertNil(check)
}

Swift Apprentice Chapter 18: Access Control, Code Organization and Testing

raywenderlich.com 354

Can you figure out what this test does? It creates a new account and then tries to
write a check for $100. The account balance is zero, so this test verifies that writing a
check fails and that it actually returns nil.

Making things @testable
When you import Foundation, Swift brings in the public interface for that module.
For your banking app, you might create a Banking module that you can import. This
lets you see the public interface. But you might want to check internal state with
XCTAssert. Instead of making things public that really shouldn’t be you can do this
in your test code:

@testable import Banking

This makes your internal interface visible. (Note: Private API remains private.) This
is a great tool for testing but you should never do this in production code. Always
stick to the public API there.

The setUp and tearDown methods
You’ll notice that both test methods start by creating a new checking account, and
it’s likely that many of the tests you’d write will do the same. Luckily there’s a setUp
method. This method is executed before each test, and its purpose is to initialize the
needed state for the tests to run.

Add this at the top of your BankingTests class:

var checkingAccount: CheckingAccount!

override func setUp() {
 super.setUp()
 checkingAccount = CheckingAccount()
}

and remove the line let checkingAccount = CheckingAccount() from both tests.

Similarly to how setUp is executed before each test, tearDown runs after every test
regardless of whether the test passes or fails. It’s good when you need to release
resources you acquired or when you need to reset the state of an object. For example,
you could reset the balance of the CheckingAccount instance to zero. This is not
needed, since setUp will initialize new accounts, but you can add it for the sake of
the example.

Swift Apprentice Chapter 18: Access Control, Code Organization and Testing

raywenderlich.com 355

Add this below the setUp method:

override func tearDown() {
 checkingAccount.withdraw(amount: checkingAccount.balance)
 super.tearDown()
}

You can read more about unit tests in https://developer.apple.com/
documentation/xctest.

Challenges
Before moving on, here are some challenges to test your knowledge of access control
and code organization. It is best if you try to solve them yourself, but solutions are
available if you get stuck. These came with the download or are available at the
printed book’s source code link listed in the introduction.

Challenge 1: Singleton pattern
A singleton is a design pattern that restricts the instantiation of a class to one
object.

Use access modifiers to create a singleton class Logger. This Logger should:

• Provide shared, public, global access to the single Logger object.

• Not be able to be instantiated by consuming code.

• Have a method log() that will print a string to the console.

Challenge 2: Stack
Declare a generic type Stack. A stack is a LIFO (last-in-first-out) data structure that
supports the following operations:

• peek: returns the top element on the stack without removing it. Returns nil if the
stack is empty.

• push: adds an element on top of the stack.

• pop: returns and removes the top element on the stack. Returns nil if the stack is
empty.

• count: returns the size of the stack.

Swift Apprentice Chapter 18: Access Control, Code Organization and Testing

raywenderlich.com 356

Ensure that these operations are the only exposed interface. In other words,
additional properties or methods needed to implement the type should not be
visible.

Challenge 3: Character battle
Utilize something called a static factory method to create a game of Wizards vs.
Elves vs. Giants.

Add a file Characters.swift in the Sources folder of your playground.

To begin:

• Create an enum GameCharacterType that defines values for elf, giant and
wizard.

• Create a class protocol GameCharacter that has properties name, hitPoints and
attackPoints. Implement this protocol for every character type.

• Create a struct GameCharacterFactory with a single static method make(ofType:
GameCharacterType) -> GameCharacter.

• Create a global function battle that pits two characters against each other — with
the first character striking first! If a character reaches 0 hit points, they have lost.

Hints:

• The playground should not be able to see the concrete types that implement
GameCharacter.

• Elves have 3 hit points, and 10 attack points. Wizards have 5 hit points and 5
attack points. Giants have 10 hit points and 3 attack points.

• The playground should know none of the above!

In your playground, you should use the following scenario as a test case:

let elf = GameCharacterFactory.make(ofType: .elf)
let giant = GameCharacterFactory.make(ofType: .giant)
let wizard = GameCharacterFactory.make(ofType: .wizard)

battle(elf, vs: giant) // Giant defeated!
battle(wizard, vs: giant) // Giant defeated!
battle(wizard, vs: elf) // Elf defeated!

Swift Apprentice Chapter 18: Access Control, Code Organization and Testing

raywenderlich.com 357

Key points
• Access control modifiers are private, fileprivate, internal, public and open.

The internal access level is the default.

• Modifiers can be used to control your code’s visible interface and hide complexity.

• private and fileprivate protect code from being accessed by code in other types
or files, respectively.

• public and open allow code to be accessed from another module. The open
modifier additionally allows entities to be overridden by other modules.

• When access modifiers are applied to extensions, all members of the extension
receive that access level.

• Extensions that mark protocol conformance cannot have access modifiers.

• The keyword available can be used to evolve a library by deprecating APIs.

• You use unit tests to verify your code works as expected.

• @testable import lets you test internal API.

Swift Apprentice Chapter 18: Access Control, Code Organization and Testing

raywenderlich.com 358

19Chapter 19: Custom
Operators, Subscripts &
Keypaths
By Cosmin Pupăză

You’ve learned the basics of operator overloading in Chapter 16, “Protocols”, where
you implemented the Equatable and Comparable protocols and added custom
behavior to standard operators.

However, there are certain cases when overloading standard operators is simply not
enough. This chapter will show you how to create custom operators from scratch and
define your very own subscripts, a special case of computed properties. You’ll use
subscripts to declare your own shortcuts for accessing the elements of custom types
and provide keypaths as dynamic references for properties of objects

raywenderlich.com 359

Custom operators
You declare your own operators when you want to define a custom behavior for
which no other standard operator is designed. Think of exponentiation, for
example. You could overload the multiplication operator since exponentiation means
repeated multiplication, but it would be confusing: Operators are designed to do
only one type of operation, and you use the same operator to do two different things
in this case.

So you’ll define your own exponentiation operator, first only for a certain type then
extend it by making it generic. Before doing that, you need to know a little bit of
theory about operator types. Time to dive in!

Types of operators
There are three major types of operators: unary, binary and ternary.

• Unary operators work with only one operand and are defined either as postfix, if
they appear after the operand, or prefix, if they appear before the operand. The
logical not operator is a unary prefix operator and the forced unwrapping operator
is a unary postfix one. You learned about them in Chapter 3, “Basic Control Flow”
and Chapter 6, “Optionals”.

• Binary operators work with two operands and are infix because they appear
between the operands. All the arithmetic operators (+, -, *, /, %), comparison
operators (==, !=, <, >, <=, >=) and most of the logical ones (&&, ||) are binary infix.

• Ternary operators work with three operands. You’ve learned about the conditional
operator in Chapter 3, “Basic Control Flow”. This is the only ternary operator in
Swift.

Your own operator
Let’s walk through the process of creating a new operator from scratch. We’ll create
one for exponentiation. Since it’s a custom one, you get to choose the name yourself.
It’s usually best to stick to the characters /, =, -, +, !, *, %, <, >, &, |, ^ and ?, although
many other Unicode characters are allowed. Keep in mind you’ll have to type it often,
so the fewer keystrokes, the better. Since exponentiation is repeated multiplication
under the hood, it would be nice to choose something which reflects that. We’ll use
** since some other languages use this name as well.

Swift Apprentice Chapter 19: Custom Operators, Subscripts & Keypaths

raywenderlich.com 360

Now for the operator’s type. The ** operator works with two operands, so it’s an infix
(binary) operator.

Here’s what the operator’s signature looks like:

infix operator **

Nothing fancy here: the operator’s name and type are bundled into one line of code
with the operator keyword. As for the operator’s implementation, a naive one looks
like this:

func **(base: Int, power: Int) -> Int {
 precondition(power >= 2)
 var result = base
 for _ in 2...power {
 result *= base
 }
 return result
}

The function takes two arguments of type Int and uses loops, ranges and wildcards
to return the first argument raised to the power of the second one. Note the
multiplication assignment operator in action.

Note: You use the wildcard pattern to discard the loop’s values. You’ll learn
more about it and other pattern matching techniques in Chapter 20, “Pattern
Matching”.

Now test your brand-new operator:

let base = 2
let exponent = 2
let result = base ** exponent

Compound assignment operator
Most built-in operators have a corresponding compound assignment version. Do
the same for the exponentiation operator:

infix operator **=

func **=(lhs: inout Int, rhs: Int) {
 lhs = lhs ** rhs
}

Swift Apprentice Chapter 19: Custom Operators, Subscripts & Keypaths

raywenderlich.com 361

The operator’s name is **= and it’s infix, just like the exponentiation operator
created earlier. It has no return type and instead uses the inout keyword in front of
the type of the operand you are modifying. You’ve already seen inout in action in
Chapter 5, “Functions”. The function changes the inout parameter directly because
it’s passed by reference.

This is how the operator works:

var number = 2
number **= exponent

Your custom operator is really cool and all, but it only works for Int. Time to make it
generic!

Mini-exercises
1. Implement a custom multiplication operator for strings so that the following

code works:

let baseString = "abc"
let times = 5
var multipliedString = baseString ** times

2. Implement the corresponding multiplication assignment operator so that the
following code runs without errors:

multipliedString **= times

Generic operators
You want the exponentiation operator to work for all kind of integer types. Update
your operator implementations as follows:

func **<T: BinaryInteger>(base: T, power: Int) -> T {
 precondition(power >= 2)
 var result = base
 for _ in 2...power {
 result *= base
 }
 return result
}

func **=<T: BinaryInteger>(lhs: inout T, rhs: Int) {
 lhs = lhs ** rhs
}

Swift Apprentice Chapter 19: Custom Operators, Subscripts & Keypaths

raywenderlich.com 362

Notice the BinaryInteger type constraint on the generic parameter. This constraint
is required here as the *= operator used in the function body isn’t available on any
type T. However, it’s available on all types that conform to the BinaryInteger
protocol. The function’s body is the same as before, since the generic operator does
the same thing as its non-generic equivalent.

Your previous code should still work. Now that the operator is generic, test it with
some types other than Int:

let unsignedBase: UInt = 2
let unsignedResult = unsignedBase ** exponent

let base8: Int8 = 2
let result8 = base8 ** exponent

let unsignedBase8: UInt8 = 2
let unsignedResult8 = unsignedBase8 ** exponent

let base16: Int16 = 2
let result16 = base16 ** exponent

let unsignedBase16: UInt16 = 2
let unsignedResult16 = unsignedBase16 ** exponent

let base32: Int32 = 2
let result32 = base32 ** exponent

let unsignedBase32: UInt32 = 2
let unsignedResult32 = unsignedBase32 ** exponent

let base64: Int64 = 2
let result64 = base64 ** exponent

let unsignedBase64: UInt64 = 2
let unsignedResult64 = unsignedBase64 ** exponent

The exponentiation operator now works for all integer types: Int, UInt, Int8, UInt8,
Int16, UInt16, Int32, UInt32, Int64 and UInt64.

Note: You can also use the pow(_:_:) function from the Foundation
framework for exponentiation, but it doesn’t work for all the above types. It
does, however, handle negative and fractional exponents and is written to be
O(log) instead of O(n) as in the naive implementation.

Swift Apprentice Chapter 19: Custom Operators, Subscripts & Keypaths

raywenderlich.com 363

Precedence and associativity
Your shiny new custom operator seems to work just fine, but if you use it in a
complex expression Swift won’t know what to do with it:

2 * 2 ** 3 ** 2 // Does not compile!

In order to understand this expression, Swift needs the following information about
your operator:

• Precedence: Should the multiplication be done before or after the
exponentiation?

• Associativity: Should the consecutive exponentiations be done left to right, or
right to left?

Without this information, the only way to get Swift to understand your code is to add
parentheses.

2 * (2 ** (3 ** 2))

These parentheses are telling Swift that the exponentiation should be done before
the multiplication, and from right to left. If this is always the case, you can define
this behavior using a precedence group.

Change your operator definition to the following:

precedencegroup ExponentiationPrecedence {
 associativity: right
 higherThan: MultiplicationPrecedence
}

infix operator **: ExponentiationPrecedence

Here, you’re creating a precedence group for your exponentiation operator, telling
Swift it’s right-associative and has higher precedence than multiplication.

Swift will now understand your expression, even without parentheses:

2 * 2 ** 3 ** 2

Maybe that is a good thing, maybe it’s not. You may choose to make associativity:
none and force users to make things explicit with parenthesis.

That’s it for custom operators. Time for some fun with subscripts!

Swift Apprentice Chapter 19: Custom Operators, Subscripts & Keypaths

raywenderlich.com 364

Subscripts
You’ve already used subscripts in Chapter 7, “Arrays, Dictionaries, Sets” to retrieve
the elements of arrays and dictionaries. It’s high time you learned to create your very
own subscripts. Think of them as overloading the [] operator in order to provide
shortcuts for accessing elements of a collection, class, structure or enumeration.

The subscript syntax is as follows:

subscript(parameterList) -> ReturnType {
 get {
 // return someValue of ReturnType
 }

 set(newValue) {
 // set someValue of ReturnType to newValue
 }
}

As you can see, subscripts behave like functions and computed properties:

• The subscript’s prototype looks like a function’s signature: It has a parameter list
and a return type, but instead of the func keyword and the function’s name, you
use the subscript keyword. Subscripts may have variadic parameters but can’t
use inout or default parameters nor can they throw errors. You’ll learn more about
errors in Chapter 21, “Error Handling”.

• The subscript’s body looks like a computed property: it has both a getter and a
setter. The setter is optional, so the subscript can be either read-write or read-only.
You can omit the setter’s newValue default parameter; its type is the same as the
subscript’s return type. Only declare it if you want to change its name to
something else.

Enough theory! Add a subscript to a Person class defined as follows:

class Person {
 let name: String
 let age: Int

 init(name: String, age: Int) {
 self.name = name
 self.age = age
 }
}

Swift Apprentice Chapter 19: Custom Operators, Subscripts & Keypaths

raywenderlich.com 365

The Person class has two stored properties: name of type String and age of type
Int, along with a designated initializer to kick things off.

Now suppose I want to create a version of myself right now, as follows:

let me = Person(name: "Cosmin", age: 33)

It would be nice to access my characteristics with a subscript like this:

me["name"]
me["age"]
me["gender"]

If you run this, Xcode would output the following error:

Type "Person" has no subscripts members

Whenever you use the square brackets operator, you actually call a subscript under
the hood. Your class doesn’t have any subscripts defined by default, so you have to
declare them yourself.

Add the following code to the Person class with an extension like this:

extension Person {
 subscript(key: String) -> String? {
 switch key {
 case "name":
 return name
 case "age":
 return "\(age)"
 default:
 return nil
 }
 }
}

The subscript returns an optional string based on the key you provide: you either
return the key’s corresponding property value or nil if you don’t use a valid key. The
switch must be exhaustive, so you need a default case.

The subscript is read-only, so its entire body is a getter — you don’t need to explicitly
state that with the get keyword.

Swift Apprentice Chapter 19: Custom Operators, Subscripts & Keypaths

raywenderlich.com 366

The above test code works now:

me["name"]
me["age"]
me["gender"]

And outputs:

Cosmin
33
nil

Subscript parameters
You don’t have to use names for the subscript’s parameters when calling the
subscript even if you don’t use underscores when declaring them. Add external
parameter names if you want to be more specific like this:

subscript(key key: String) -> String? {
 // original code
}

The parameter’s name appears in the subscript call now:

me[key: "name"]
me[key: "age"]
me[key: "gender"]

Use descriptive names for external parameters instead of their local counterparts if
you want to add more context to the subscript:

subscript(property key: String) -> String? {
 // original code
}

me[property: "name"]
me[property: "age"]
me[property: "gender"]

Static subscripts
You can define static subscripts for custom types in Swift:

class File {
 let name: String

Swift Apprentice Chapter 19: Custom Operators, Subscripts & Keypaths

raywenderlich.com 367

 init(name: String) {
 self.name = name
 }

 // 1
 static subscript(key: String) -> String {
 switch key {
 case "path":
 return "custom path"
 default:
 return "default path"
 }
 }
}

// 2
File["path"]
File["PATH"]

This is how it all works:

1. Use static to create a static subscript that returns the default or custom path for
File.

2. Call the subscript on File instead of a File instance.

Dynamic member lookup
You use dynamic member lookup to provide arbitrary dot syntax to your type.

Consider the following:

// 1
@dynamicMemberLookup
class Instrument {
 let brand: String
 let year: Int
 private let details: [String: String]

 init(brand: String, year: Int, details: [String: String]) {
 self.brand = brand
 self.year = year
 self.details = details
 }

 // 2
 subscript(dynamicMember key: String) -> String {
 switch key {
 case "info":
 return "\(brand) made in \(year)."

Swift Apprentice Chapter 19: Custom Operators, Subscripts & Keypaths

raywenderlich.com 368

 default:
 return details[key] ?? ""
 }
 }
}

// 3
let instrument = Instrument(brand: "Roland", year: 2019,
 details: ["type": "acoustic",
 "pitch": "C"])
instrument.info
instrument.pitch

Going through the above code step by step:

1. Mark Instrument as @dynamicMemberLookup to enable dot syntax for its
subscripts.

2. Conform Instrument to @dynamicMemberLookup by implementing
subscript(dynamicMember:).

3. Call the previously implemented subscript using dot syntax. It returns either
contents from details or more information about Instrument.

Using @dynamicMemberLookup here makes the contents of the details dictionary
available as properties, which improves readability.

Note, however, that the compiler evaluates dynamic member calls at runtime, so you
lose the usual compile-time safety. For example, this compile without complaint:

guitar.dlfksdf // Returns ""

While you can use @dynamicMemberLookup for other purposes, its main purpose is to
support interacting with dynamic languages like Python or Ruby. You should use it
judiciously as it prevents the compiler from checking an entire class of errors that it
could previously identify at compile time.

instrument.brand // "Roland"
instrument.year // 2019

A derived class inherits dynamic member lookup from its base one:

class Guitar: Instrument {}
let guitar = Guitar(brand: "Fender", year: 2019,
 details: ["type": "electric", "pitch": "C"])
guitar.info

Swift Apprentice Chapter 19: Custom Operators, Subscripts & Keypaths

raywenderlich.com 369

You use dot syntax to call the Guitar subscript, since Guitar is an Instrument and
Instrument implements @dynamicMemberLookup.

You may use dynamic member lookup for class subscripts in Swift as well. They
behave like static subscripts and you can override them in subclasses:

// 1
@dynamicMemberLookup
class Folder {
 let name: String

 init(name: String) {
 self.name = name
 }

 // 2
 class subscript(dynamicMember key: String) -> String {
 switch key {
 case "path":
 return "custom path"
 default:
 return "default path"
 }
 }
}

// 3
Folder.path
Folder.PATH

Here’s what’s going on over here:

1. Mark Folder as @dynamicMemberLookup to enable dot syntax for custom
subscripts.

2. Use class and dynamic member lookup to create a class subscript that returns
the default or custom path for Folder.

3. Call the subscript on Folder with dot syntax.

Subscripts are easy to use and implement. They live somewhere between computed
properties and methods. However, take care not to overuse them. Unlike computed
properties and methods, subscripts have no name to make their intentions clear.
Subscripts are almost exclusively used to access the elements of a collection, so don’t
confuse the readers of your code by using them for something unrelated and
unintuitive!

Swift Apprentice Chapter 19: Custom Operators, Subscripts & Keypaths

raywenderlich.com 370

Keypaths
Keypaths enable you to store references to properties. For example, this is how you
model the tutorials on our website:

class Tutorial {
 let title: String
 let author: Person
 let details: (type: String, category: String)

 init(title: String, author: Person,
 details: (type: String, category: String)) {
 self.title = title
 self.author = author
 self.details = details
 }
}

let tutorial = Tutorial(title: "Object Oriented Programming in
Swift",
 author: me,
 details: (type: "Swift",
 category: "iOS"))

Each tutorial has a certain title, author, type and category. Using keypaths, you
can get the tutorial’s title like this:

let title = \Tutorial.title
let tutorialTitle = tutorial[keyPath: title]

You first use a backslash to create a keypath for the title property of the Tutorial
class, and then access its corresponding data with the keyPath(_:) subscript.

Keypaths can access properties several levels deep:

let authorName = \Tutorial.author.name
var tutorialAuthor = tutorial[keyPath: authorName]

You can also use keypaths for tuples in Swift:

let type = \Tutorial.details.type
let tutorialType = tutorial[keyPath: type]
let category = \Tutorial.details.category
let tutorialCategory = tutorial[keyPath: category]

Here you use keypaths to get type and category from details in tutorial.

Swift Apprentice Chapter 19: Custom Operators, Subscripts & Keypaths

raywenderlich.com 371

Appending keypaths
You can make new keypaths by appending to existing ones like this:

let authorPath = \Tutorial.author
let authorNamePath = authorPath.appending(path: \.name)
tutorialAuthor = tutorial[keyPath: authorNamePath]

You use the appending(path:) method to add a new keypath to the already defined
authorPath one and infer the keypath’s base type.

Setting properties
Keypaths can change property values. Suppose you set up your very own jukebox to
play your favorite song:

class Jukebox {
 var song: String

 init(song: String) {
 self.song = song
 }
}

let jukebox = Jukebox(song: "Nothing Else Matters")

You declare the song property as a variable because your best friend comes to visit
and wants to listen to her favorite song instead:

let song = \Jukebox.song
jukebox[keyPath: song] = "Stairway to Heaven"

You use the song keypath to change the song for your friend and everyone is happy
now!

Keypath member lookup
You can use dynamic member lookup for keypaths:

// 1
struct Point {
 let x, y: Int
}

// 2
@dynamicMemberLookup

Swift Apprentice Chapter 19: Custom Operators, Subscripts & Keypaths

raywenderlich.com 372

struct Circle {
 let center: Point
 let radius: Int

 // 3
 subscript(dynamicMember keyPath: KeyPath<Point, Int>) -> Int {
 center[keyPath: keyPath]
 }
}

// 4
let center = Point(x: 1, y: 2)
let circle = Circle(center: center, radius: 1)
circle.x
circle.y

Here’s what this code does:

1. Declare a type Point with x and y coordinates .

2. Annotate Circle with @dynamicMemberLookup to enable dot syntax for its
subcripts.

3. Create a subscript which uses keypaths to access center properties from Circle.

4. Call center properties on circle using dynamic member lookup instead of
keypaths.

As you can see, using keypaths is more involved than using properties. With
keypaths, accessing a property becomes a two-step process:

1. First, you decide which property you need and create a keypath.

2. Then, you pass this keypath to an instance using the keypath subscript to access
the selected property.

The benefit is that it you can parameterize the properties you use in your code.
Instead of hard coding them, you can store them in variables as keypaths. You could
even leave it up to your users to decide which properties to use!

Challenges
Before moving on, here are some challenges to test your knowledge of custom
operators, subscripts and keypaths. It is best if you try to solve them yourself, but
solutions are available if you get stuck. These came with the download or are
available at the printed book’s source code link listed in the introduction.

Swift Apprentice Chapter 19: Custom Operators, Subscripts & Keypaths

raywenderlich.com 373

Challenge 1: Make it compile
Modify the following subscript implementation so that it compiles in a playground:

extension Array {
 subscript(index: Int) -> (String, String)? {
 guard let value = self[index] as? Int else {
 return nil
 }

 switch (value >= 0, abs(value) % 2) {
 case (true, 0):
 return ("positive", "even")
 case (true, 1):
 return ("positive", "odd")
 case (false, 0):
 return ("negative", "even")
 case (false, 1):
 return ("negative", "odd")
 default:
 return nil
 }
 }
}

Challenge 2: Random access string
Write a subscript that computes the character at a certain index in a string. Why is
this considered harmful?

Challenge 3: Generic exponentiation
Implement the exponentiation generic operator for float types so that the following
code works:

let exponent = 2
let baseDouble = 2.0
var resultDouble = baseDouble ** exponent
let baseFloat: Float = 2.0
var resultFloat = baseFloat ** exponent
let baseCG: CGFloat = 2.0
var resultCG = baseCG ** exponent

Hint: Import the CoreGraphics framework in order to work with CGFloat.

Swift Apprentice Chapter 19: Custom Operators, Subscripts & Keypaths

raywenderlich.com 374

Challenge 4: Generic exponentiation
assignment
Implement the exponentiation assignment generic operator for float types so that
the following code works:

resultDouble **= exponent
resultFloat **= exponent
resultCG **= exponent

Key points
1. Remember the custom operators mantra when creating brand new operators

from scratch: With great power comes great responsibility. Make sure the
additional cognitive overhead of a custom operator introduces pays for itself.

2. Choose the appropriate type for custom operators: postfix, prefix or infix.

3. Don’t forget to define any related operators, such as compound assignment
operators, for custom operators.

4. Use subscripts to overload the square brackets operator for classes, structures
and enumerations.

5. Use keypaths to create dynamic references to properties.

6. Use dynamic member lookup to provide dot syntax for subscripts and keypaths.

Swift Apprentice Chapter 19: Custom Operators, Subscripts & Keypaths

raywenderlich.com 375

20Chapter 20: Pattern
Matching
By Ben Morrow

In this chapter, you’ll learn about proper golf attire: How to pair a striped shirt with
plaid shorts:

No, just playing! This is not your grandfather’s pattern matching.

Actually, you’ve already seen pattern matching in action. In Chapter 4, “Advanced
Control Flow”, you used a switch statement to match numbers and strings in
different cases. That’s a simple example, but there’s a lot more to explore on the
topic.

You’re going to dive deep into the underlying mechanisms and understand more
about how the Swift compiler interprets the code you type.

Swift is a multi-paradigm language that lets you build full-featured, production
ready, object-oriented software. The designers of Swift borrowed some tricks from
more functional style languages like Haskell and Erlang.

raywenderlich.com 376

Pattern matching is a staple of those functional languages. It saves you from having
to type much longer and less readable statements to evaluate conditions.

Suppose you have a coordinate with x-, y-, and z- axis values:

let coordinate = (x: 1, y: 0, z: 0)

Both of these code snippets will achieve the same result:

// 1
if (coordinate.y == 0) && (coordinate.z == 0) {
 print("along the x-axis")
}

// 2
if case (_, 0, 0) = coordinate {
 print("along the x-axis")
}

The first option digs into the internals of a tuple and has a lengthy equatable
comparison. It also uses the logical && operator to make sure both conditions are
true.

The second option, using pattern matching, is concise and readable.

The following sections will show you how — and when — to use patterns in your
code.

Introducing patterns
Patterns provide rules to match values. You can use patterns in switch cases, as well
as in if, while, guard, and for statements. You can also use patterns in variable and
constant declarations.

Believe it or not, you’ve already seen another good example of patterns with that
coordinate tuple declaration. You construct a tuple by separating values with
commas between parentheses, like (x, y, z). The compiler will understand that
pattern is referring to a tuple of 3 values: x, y and z. Tuples have the structure of a
composite value.

Single values also have a structure. The number 42 is a single value and by its very
nature is identifiable.

A pattern defines the structure of a value. Pattern matching lets you check values
against each other.

Swift Apprentice Chapter 20: Pattern Matching

raywenderlich.com 377

Note: The structure of a value doesn’t refer to the struct type. They are
different concepts, even though they use the same word. Could be a symptom
of the paucity of language!

Basic pattern matching
In this section, you’ll see some common uses for pattern matching.

If and guard
Throughout the book so far, you’ve used plain old if and guard statements. You can
transform them into pattern matching statements by using a case condition. The
example below shows how you use an if statement with a case condition:

func process(point: (x: Int, y: Int, z: Int)) -> String {
 if case (0, 0, 0) = point {
 return "At origin"
 }
 return "Not at origin"
}

let point = (x: 0, y: 0, z: 0)
let status = process(point: point) // At origin

In that code, all three axes are matched to zero values.

A case condition in a guard statement achieves the same effect:

func process(point: (x: Int, y: Int, z: Int)) -> String {
 guard case (0, 0, 0) = point else {
 return "Not at origin"
 }
 // guaranteed point is at the origin
 return "At origin"
}

In a case condition, you write the pattern first followed by an equals sign, =, and
then the value you want to match to the pattern. if statements and guard
statements work best if there is a single pattern you care to match.

Swift Apprentice Chapter 20: Pattern Matching

raywenderlich.com 378

Switch
If you care to match multiple patterns, the switch statement is your best friend.

You can rewrite processPoint() like this:

func process(point: (x: Int, y: Int, z: Int)) -> String {
 // 1
 let closeRange = -2...2
 let midRange = -5...5
 // 2
 switch point {
 case (0, 0, 0):
 return "At origin"
 case (closeRange, closeRange, closeRange):
 return "Very close to origin"
 case (midRange, midRange, midRange):
 return "Nearby origin"
 default:
 return "Not near origin"
 }
}

let point = (x: 15, y: 5, z: 3)
let status = process(point: point) // Not near origin

This code introduces a couple of new concepts:

1. You can match against ranges of numbers.

2. The switch statement allows for multiple cases to match patterns.

The switch statement also provides an advantage over the if statement because of
its exhaustiveness checking. The compiler guarantees that you have checked for all
possible values by the end of a switch statement.

Also, recall that a switch statement will exit with the first case condition that
matches. That’s why you place the midRange condition second. Even though the
midRange condition would match a closeRange value, it won’t be evaluated unless
the previous condition fails. The default case is the catch-all. If there hasn’t been a
match in all the other cases, the default case will execute.

Mini exercise
Given the population of a group of people, write a switch statement that prints out a
comment for different ranges of group sizes: single, a few, several and many.

Swift Apprentice Chapter 20: Pattern Matching

raywenderlich.com 379

for
A for loop churns through a collection of elements. Pattern matching can act as a
filter:

let groupSizes = [1, 5, 4, 6, 2, 1, 3]
for case 1 in groupSizes {
 print("Found an individual") // 2 times
}

In this example, the array provides a list of workgroup sizes for a school classroom.
The implementation of the loop only runs for elements in the array that match the
value 1. Since students in the class are encouraged to work in teams instead of by
themselves, you can isolate the people who have not found a partner.

Patterns
Now that you’ve seen some basic examples of pattern matching, let’s talk about the
patterns on which you can match.

Wildcard pattern
Revisit the example you saw at the beginning of this chapter, where you wanted to
check if a value was on the x-axis, for the (x, y, z) tuple coordinate:

if case (_, 0, 0) = coordinate {
 // x can be any value. y and z must be exactly 0.
 print("On the x-axis") // Printed!
}

The pattern in this case condition uses an underscore, _, to match any value of x
component and exactly 0 for the y and z components.

Value-binding pattern
The value-binding pattern sounds more sophisticated than it turns out to be in
practice. You simply use var or let to declare a variable or a constant while
matching a pattern.

Swift Apprentice Chapter 20: Pattern Matching

raywenderlich.com 380

You can then use the value of the variable or constant inside the execution block:

if case (let x, 0, 0) = coordinate {
 print("On the x-axis at \(x)") // Printed: 1
}

The pattern in this case condition matches any value on the x-axis, and then binds
its x component to the constant named x for use in the execution block.

If you wanted to bind multiple values, you could write let multiple times or, even
better, move the let outside the tuple:

if case let (x, y, 0) = coordinate {
 print("On the x-y plane at (\(x), \(y))") // Printed: 1, 0
}

By putting the let on the outside of the tuple, the compiler will bind all the
unknown constant names it finds.

Identifier pattern
The identifier pattern is even more straightforward than the value-binding pattern.
The identifier pattern is the constant or variable name itself; in the example above,
that’s the x in the pattern. You’re telling the compiler, “When you find a value of
(something, 0, 0), assign the something to x.”

This description feels intertwined with what you’ve seen before because the
identifier pattern is a sub-pattern of the value-binding pattern.

Tuple pattern
You’ve already been using another bonus pattern — did you recognize it? The tuple
isn’t just a series of comma-separated values between parentheses: it’s actually
comma-separated patterns. In the example tuple pattern, (something, 0, 0), the
interior patterns are (identifier, expression, expression).

You’ll learn about expression patterns at the end of this chapter. For now, the
important takeaway is that the tuple pattern combines many patterns into one and
helps you write terse code.

Swift Apprentice Chapter 20: Pattern Matching

raywenderlich.com 381

Enumeration case pattern
In Chapter 15, “Enumerations”, you saw how you could match the member values of
an enumeration:

enum Direction {
 case north, south, east, west
}

let heading = Direction.north

if case .north = heading {
 print("Don’t forget your jacket") // Printed!
}

As you can imagine, the enumeration case pattern matches the value of an
enumeration. In this example, case .north will only match on the .north value of
the enumeration.

The enumeration case pattern has some magic up its sleeve. When you combine it
with the value binding pattern, you can extract associated values from an
enumeration:

enum Organism {
 case plant
 case animal(legs: Int)
}

let pet = Organism.animal(legs: 4)

switch pet {
case .animal(let legs):
 print("Potentially cuddly with \(legs) legs") // Printed: 4
default:
 print("No chance for cuddles")
}

In that code, the associated value for .animal is bound to the constant named legs.
You reference the legs constant in the print call inside the execution block of that
condition.

Associated values are locked away in enumeration values until you use the value-
binding pattern to extract them

Swift Apprentice Chapter 20: Pattern Matching

raywenderlich.com 382

Mini exercise
In Chapter 15, “Enumerations” you learned that an optional is an enumeration under
the hood. An optional is either .some(value) or .none. You just learned how to
extract associated values from optionals. Given the following array of optionals, print
the names that are not nil with a for loop:

let names: [String?] =
 ["Michelle", nil, "Brandon", "Christine", nil, "David"]

Optional pattern
Speaking of optionals, there is also an optional pattern. The optional pattern
consists of an identifier pattern followed immediately by a question mark. You can
use this pattern in the same places you would use enumeration case patterns.

You can rewrite the solution to the mini exercise as:

for case let name? in names {
 print(name) // 4 times
}

Optional patterns are syntactic sugar for enumeration case patterns containing
optional values. Syntactic sugar merely means a more pleasant way of writing the
same thing.

“Is” type-casting pattern
By using the is operator in a case condition, you check if an instance is of a
particular type. An example of when to use this is parsing through a JSON export. In
case you’re not familiar, JSON is basically an array full of all different types, which
you can write as [Any] in Swift. Web APIs and website developers make use of JSON a
lot.

Therefore, when you’re parsing data from a web API, you’ll need to check if each
value is of a particular type:

let response: [Any] = [15, "George", 2.0]

for element in response {
 switch element {
 case is String:
 print("Found a string") // 1 time
 default:

Swift Apprentice Chapter 20: Pattern Matching

raywenderlich.com 383

 print("Found something else") // 2 times
 }
}

With this code, you find out that one of the elements is of type String. But you don’t
have access to the value of that String in the implementation. That’s where the next
pattern comes to the rescue.

“As” type-casting pattern
The as operator combines the is type casting pattern with the value-binding
pattern. Extending the example above, you could write a case like this:

for element in response {
 switch element {
 case let text as String:
 print("Found a string: \(text)") // 1 time
 default:
 print("Found something else") // 2 times
 }
}

So when the compiler finds an object that it can cast to a String, the compiler will
bind the value to the text constant.

Advanced patterns
You’ve blazed through all the above patterns! What you’ve learned so far in this
chapter will carry you quite far as a developer. In the upcoming section, you’ll learn
some modifier tricks that enable you to consolidate your code even further.

Qualifying with where
You can specify a where condition to further filter a match by checking a unary
condition in-line. In Chapter 4, “Advanced Control Flow”, you saw an example like
this:

for number in 1...9 {
 switch number {
 case let x where x % 2 == 0:
 print("even") // 4 times
 default:
 print("odd") // 5 times

Swift Apprentice Chapter 20: Pattern Matching

raywenderlich.com 384

 }
}

If the number in the code above is divisible evenly by two, the first case is matched.

You can utilize where in a more sophisticated way with enumerations. Imagine
you’re writing a game where you want to save the player’s progress for each level:

enum LevelStatus {
 case complete
 case inProgress(percent: Double)
 case notStarted
}

let levels: [LevelStatus] =
 [.complete, .inProgress(percent: 0.9), .notStarted]

for level in levels {
 switch level {
 case .inProgress(let percent) where percent > 0.8 :
 print("Almost there!")
 case .inProgress(let percent) where percent > 0.5 :
 print("Halfway there!")
 case .inProgress(let percent) where percent > 0.2 :
 print("Made it through the beginning!")
 default:
 break
 }
}

In this code, one level in the game is currently in progress. That level matches the
first case as 90% complete and prints "Almost there!".

Chaining with commas
Another thing you learned in Chapter 4, “Advanced Control Flow”, was how to match
multiple patterns in a single-case condition. Here’s an example similar to what you
saw previously:

func timeOfDayDescription(hour: Int) -> String {
 switch hour {
 case 0, 1, 2, 3, 4, 5:
 return "Early morning"
 case 6, 7, 8, 9, 10, 11:
 return "Morning"
 case 12, 13, 14, 15, 16:
 return "Afternoon"
 case 17, 18, 19:
 return "Evening"

Swift Apprentice Chapter 20: Pattern Matching

raywenderlich.com 385

 case 20, 21, 22, 23:
 return "Late evening"
 default:
 return "INVALID HOUR!"
 }
}
let timeOfDay = timeOfDayDescription(hour: 12) // Afternoon

Here you see several identifier patterns matched in each case condition. You can use
the constants and variables you bind in preceding patterns in the patterns that
follow after each comma. Here’s a refinement to the cuddly animal test:

if case .animal(let legs) = pet, case 2...4 = legs {
 print("potentially cuddly") // Printed!
} else {
 print("no chance for cuddles")
}

The first pattern, before the comma, binds the associated value of the enumeration
to the constant legs. In the second pattern, after the comma, the value of the legs
constant is matched against a range.

Swift’s if statement is surprisingly capable. An if statement can have multiple
conditions, separated by commas. Conditions fall into one of three categories:

• Simple logical test E.g.: foo == 10 || bar > baz.

• Optional binding E.g.: let foo = maybeFoo.

• Pattern matching E.g.: case .bar(let something) = theValue.

Conditions are evaluated in the order they are defined. At runtime, no conditions
following a failing condition will be evaluated. Here is a contrived example of a
complicated if statement:

enum Number {
 case integerValue(Int)
 case doubleValue(Double)
 case booleanValue(Bool)
}

let a = 5
let b = 6
let c: Number? = .integerValue(7)
let d: Number? = .integerValue(8)

if a != b {
 if let c = c {
 if let d = d {

Swift Apprentice Chapter 20: Pattern Matching

raywenderlich.com 386

 if case .integerValue(let cValue) = c {
 if case .integerValue(let dValue) = d {
 if dValue > cValue {
 print("a and b are different") // Printed!
 print("d is greater than c") // Printed!
 print("sum: \(a + b + cValue + dValue)") // 26
 }
 }
 }
 }
 }
}

Nesting all those if statements one inside the other is known a pyramid of doom.
Instead, you can use the unwrapped and bound values immediately after consecutive
commas:

if a != b,
 let c = c,
 let d = d,
 case .integerValue(let cValue) = c,
 case .integerValue(let dValue) = d,
 dValue > cValue {
 print("a and b are different") // Printed!
 print("d is greater than c") // Printed!
 print("sum: \(a + b + cValue + dValue)") // Printed: 26
}

So now you see that pattern matching can be combined with simple logical
conditions and optional binding within a single if statement. Your code is looking
more elegant already!

Custom tuple
In this chapter, you saw how a tuple pattern could match a three-dimensional
coordinate, (x, y, z). You can create a just-in-time tuple expression at the
moment you’re ready to match it.

Here’s a tuple that does just that:

let name = "Bob"
let age = 23

if case ("Bob", 23) = (name, age) {
 print("Found the right Bob!") // Printed!
}

Swift Apprentice Chapter 20: Pattern Matching

raywenderlich.com 387

Here you combine the name and age constants into a tuple and evaluate them
together.

Another such example involves a login form with a username and password field.
Users are notorious for leaving fields incomplete then clicking Submit. In these
cases, you want to show a specific error message to the user that indicates the
missing field, like so:

var username: String?
var password: String?

switch (username, password) {
case let (username?, password?):
 print("Success! User: \(username) Pass: \(password)")
case let (username?, nil):
 print("Password is missing. User: \(username)")
case let (nil, password?):
 print("Username is missing. Pass: \(password)")
case (nil, nil):
 print("Both username and password are missing") // Printed!
}

Each case checks one of the possible submissions. You write the success case first
because if it is true, there is no need to check the rest of the cases. In Swift,switch
statements don’t fall through, so if the first case condition is true, the remaining
conditions are not evaluated.

Fun with wildcards
One fun way to use the wildcard pattern is within the definition of a for loop:

for _ in 1...3 {
 print("hi") // 3 times
}

This code performs its action three times. The underscore _ means that you don’t
care to use each value from the sequence. If you ever find yourself needing to repeat
an action, this is a clean way to write the code.

Validate that an optional exists

let user: String? = "Bob"
guard let _ = user else {
 print("There is no user.")
 fatalError()
}

Swift Apprentice Chapter 20: Pattern Matching

raywenderlich.com 388

print("User exists, but identity not needed.") // Printed!

In this code, you check to make sure user has a value. You use the underscore to
indicate that, right now, you don’t care what value it contains.

Even though you can do something it doesn’t mean you should. The best way to
validate an optional where you don’t care about the value is like so:

guard user != nil else {
 print("There is no user.")
 fatalError()
}

Here, user != nil does the same thing as let _ = user but the intent is more
apparent.

Organize an if-else-if

In app development, views are defined by a rectangle. Here’s a simplified version:

struct Rectangle {
 let width: Int
 let height: Int
 let background: String
}

let view = Rectangle(width: 15, height: 60, background: "Green")
switch view {
case _ where view.height < 50:
 print("Shorter than 50 units")
case _ where view.width > 20:
 print("Over 50 tall, & over 20 wide")
case _ where view.background == "Green":
 print("Over 50 tall, at most 20 wide, & green") // Printed!
default:
 print("This view can’t be described by this example")
}

You could write this code as a chain of if statements. When you use the switch
statement, it becomes clear that each condition is a case. Notice that each case uses
an underscore with a qualifying where clause.

Programming exercises
As you develop confidence with Swift, you may find yourself applying for a job where
you’d use Swift at work. Hiring interviews have some classic questions like the

Swift Apprentice Chapter 20: Pattern Matching

raywenderlich.com 389

Fibonacci and FizzBuzz algorithms. Pattern matching can come in handy for both of
these challenges.

Note: Both algorithms are call-intensive. If you’re following along in a
playground, please start a new playground and use it for the rest of this
chapter to avoid it stuttering under the processing load.

Fibonacci

In the Fibonacci sequence, every element is the sum of the two preceding elements.
The sequence starts with 0, 1, 1, 2, 3, 5, 8 ...

Here’s how you could find the 15th number of the Fibonacci sequence:

func fibonacci(position: Int) -> Int {
 switch position {
 // 1
 case let n where n <= 1:
 return 0
 // 2
 case 2:
 return 1
 // 3
 case let n:
 return fibonacci(position: n - 1) + fibonacci(position: n -
2)
 }
}

let fib15 = fibonacci(position: 15) // 377

1. If the current sequence position is less than two, the function will return 0.

2. If the current sequence position is equal to two, the function will return 1.

3. Otherwise, the function will use recursion to call itself and sum up all the
numbers. This code is also an example of a way to avoid the default case in a
switch statement. The let n case matches all values, so the default case is not
needed.

FizzBuzz

In the FizzBuzz algorithm, your objective is to print the numbers from 1 to 100,
except:

• On multiples of three, print "Fizz" instead of the number.

Swift Apprentice Chapter 20: Pattern Matching

raywenderlich.com 390

• On multiples of five, print "Buzz" instead of the number.

• On multiples of both three and five, print "FizzBuzz" instead of the number.

for i in 1...100 {
 // 1
 switch (i % 3, i % 5) {
 // 2
 case (0, 0):
 print("FizzBuzz", terminator: " ")
 case (0, _):
 print("Fizz", terminator: " ")
 case (_, 0):
 print("Buzz", terminator: " ")
 // 3
 case (_, _):
 print(i, terminator: " ")
 }
}
print("")

Here’s what’s going on:

1. You construct a tuple in the switch expression.

2. Each of the cases checks a result of the modulo operation. The underscore means
you don’t care and it matches any value.

3. In this code, you learn another equivalent way to avoid writing the default case
of a switch statement. A tuple pattern with all underscores, (_, _), matches any
value. This type of pattern is known in the Swift lexicon as an irrefutable
pattern.

The terminator parameter of the print call tells the compiler to end each line with
a space character instead of a new line. All the numbers in the algorithm will print
on one line in your debug area. The final print("") call adds an empty string with a
new line so that any future code will print on a new line.

Now you know how to ace those tricky interview questions in a surprisingly elegant
fashion using pattern matching. You can thank me later for your new Swift job!

Expression pattern
With all the pattern matching skills you’ve developed so far, you’re finally ready to
learn what’s underneath the hood. The expression pattern is simple, but oh, so
powerful.

Swift Apprentice Chapter 20: Pattern Matching

raywenderlich.com 391

At the beginning of this chapter, you saw the example tuple pattern (x, 0, 0). You
learned that, internally, the tuple is a comma-separated list of patterns. You also
learned that the x is an identifier pattern, while the 0’s are examples of the
expression pattern. So the internal patterns of this tuple are (identifier, expression,
expression).

The expression pattern compares values with the pattern matching operator, ~=. The
match succeeds when a comparison returns true. If the values are of the same type,
the common == equality operator performs the comparison instead. You learned how
to implement Equatable and == for your own named types back in Chapter 16,
“Protocols”.

When the values aren’t of the same type or the type doesn’t implement the
Equatable protocol, the ~= pattern matching operator will be used.

For instance, the compiler uses the ~= operator to check whether an integer value
falls within a range. The range is certainly not an integer, so the compiler cannot use
the == operator. However, you can conceptualize the idea of checking whether an
Int is within a range. That’s where the ~= pattern matching operator comes in:

let matched = (1...10 ~= 5) // true

As in the definition of a case condition, the pattern is required to be on the left-hand
side of the operator, and the value on the right-hand side of the operator. Here’s
what the equivalent case condition looks like:

if case 1...10 = 5 {
 print("In the range")
}

This if case statement is functionally equivalent to using the ~= operator in the
previous example.

Overloading ~=
You can overload the ~= operator to provide your own custom expression matching
behavior. You’ll implement a pattern match between an array and an integer to check
if the integer is an element of the array. A value of 2 should match the pattern [0,
1, 2, 3]. With the standard library, you’ll get an error on this code:

let list = [0, 1, 2, 3]
let integer = 2

let isInArray = (list ~= integer) // Error!

Swift Apprentice Chapter 20: Pattern Matching

raywenderlich.com 392

if case list = integer { // Error!
 print("The integer is in the array")
} else {
 print("The integer is not in the array")
}

Sure, you could check if the integer is in the array like this:

let isInList = list.contains(integer) // true

But it would be nice to use pattern matching so that you could check for a match
within a switch statement. You can implement the missing pattern matcher with
this code:

// 1
func ~=(pattern: [Int], value: Int) -> Bool {
 // 2
 for i in pattern {
 if i == value {
 // 3
 return true
 }
 }
 // 4
 return false
}

Here’s what’s happening:

1. The function takes an array of integers as its pattern parameter and an integer
as its value parameter. The function returns a Bool.

2. In the implementation, a for loop iterates through each element in the array.

3. If the value is equal to the current array element, the function immediately
returns true and no more code runs within the function implementation.

4. If the for loop finishes without any matches then the function returns false.

Now that the pattern matching operator has been overloaded, the expression
patterns you saw earlier now match correctly with no errors.

let isInArray = (list ~= integer) // true

if case list = integer {
 print("The integer is in the array") // Printed!
} else {
 print("The integer is not in the array")
}

Swift Apprentice Chapter 20: Pattern Matching

raywenderlich.com 393

You are now a pattern matching ninja! With your mastery of patterns, you’re ready to
write clear, concise, readable code.

Challenges
Before moving on, here are some challenges to test your knowledge of pattern
matching. It is best if you try to solve them yourself, but solutions are available if you
get stuck. These came with the download or are available at the printed book’s
source code link listed in the introduction.

Challenge 1: Carded
Given this code, write an if statement that shows an error if the user is not yet 21
years old:

enum FormField {
 case firstName(String)
 case lastName(String)
 case emailAddress(String)
 case age(Int)
}
let minimumAge = 21
let submittedAge = FormField.age(22)

Challenge 2: Planets with liquid water
Given this code, find the planets with liquid water using a for loop:

enum CelestialBody {
 case star

Swift Apprentice Chapter 20: Pattern Matching

raywenderlich.com 394

 case planet(liquidWater: Bool)
 case comet
}

let telescopeCensus = [
 CelestialBody.star,
 .planet(liquidWater: false),
 .planet(liquidWater: true),
 .planet(liquidWater: true),
 .comet
]

Challenge 3: Find the year
Given this code, find the albums that were released in 1974 with a for loop:

let queenAlbums = [
 ("A Night at the Opera", 1974),
 ("Sheer Heart Attack", 1974),
 ("Jazz", 1978),
 ("The Game", 1980)
]

Challenge 4: Where in the world
Given this code, write a switch statement that will print out whether the monument
is located in the northern hemisphere, the southern hemisphere, or on the equator.

let coordinates = (lat: 192.89483, long: -68.887463)

Key points
• A pattern represents the structure of a value.

• Pattern matching can help you write more readable code than the alternative
logical conditions.

• Pattern matching is the only way to extract associated values from enumeration
values.

Swift Apprentice Chapter 20: Pattern Matching

raywenderlich.com 395

21Chapter 21: Error
Handling
By Cosmin Pupăză

All programmers, especially skilled ones, need to worry about error handling. There
is no shame in errors. They don’t mean you’re a bad programmer. Concerning
yourself with error handling simply means you acknowledge that you don’t control
everything.

In this chapter, you’ll learn the fundamentals of error handling: what it is, how to
implement and when to worry about it.

raywenderlich.com 396

What is error handling?
Error handling is the art of failing gracefully. You have complete control of your code,
but you don’t have complete control of anything outside of your code. This includes
user input, network connections and any external files your app needs to access.

Imagine you’re in the desert and you decide to surf the internet. You’re miles away
from the nearest hotspot. You have no cellular signal. You open your internet
browser. What happens? Does your browser hang there forever with a spinning wheel
of death, or does it immediately alert you to the fact that you have no internet
access?

These are things you need to consider when you’re designing the user experience for
your apps, as well as the interfaces of your classes and structs. Think about what can
go wrong, and how you want your app to respond to it.

First level error handling with optionals
Before you deep-dive into error handling protocols and blocks, you’ll start with the
simplest error-handling mechanism possible. When programming, it’s important to
use the simplest solution at your disposal. There is no point in building a
complicated solution when changing one line of code would work.

Failable initializers
When you attempt to initialize an object, it may fail. For example, if you’re
converting a String into an Int there is no guarantee it’ll work.

let value = Int("3") // Optional(3)
let failedValue = Int("nope") // nil

If you make your own raw representable enumeration type, the compiler will write a
failable initializer for you. To see it at work, try the following:

enum PetFood: String {
 case kibble, canned
}

let morning = PetFood(rawValue: "kibble") // Optional(.kibble)
let snack = PetFood(rawValue: "fuuud!") // nil

As you can see, failable initializers return optionals instead of regular instances. The

Swift Apprentice Chapter 21: Error Handling

raywenderlich.com 397

return value will be nil if initialization fails.

You can create failable initializers yourself. Try it out:

struct PetHouse {
 let squareFeet: Int

 init?(squareFeet: Int) {
 if squareFeet < 1 {
 return nil
 }
 self.squareFeet = squareFeet
 }
}

let tooSmall = PetHouse(squareFeet: 0) // nil
let house = PetHouse(squareFeet: 1) // Optional(Pethouse)

To make a failable initializer, you simply name it init?(...) and return nil if it
fails. By using a failable initializer, you can guarantee that your instance has the
correct attributes or it will never exist.

Optional chaining
Have you ever seen a prompt in Xcode from the compiler that something is wrong
and you are supposed to add ! to a property? The compiler is telling you that you’re
dealing with an optional value and suggesting that you deal with it by force
unwrapping.

Sometimes force unwrapping or using an implicitly unwrapped optional is just fine.
If you have @IBOutlets in your UI, you know that those elements must exist after
the view loads. If they don’t, there is something terribly wrong with your app. In
general, force unwrap or using implicitly unwrapped optionals is appropriate only
when an optional must contain a value. In all other cases, you’re asking for trouble!

class Pet {
 var breed: String?

 init(breed: String? = nil) {
 self.breed = breed
 }
}

class Person {
 let pet: Pet

 init(pet: Pet) {
 self.pet = pet

Swift Apprentice Chapter 21: Error Handling

raywenderlich.com 398

 }
}

let delia = Pet(breed: "pug")
let olive = Pet()

let janie = Person(pet: olive)
let dogBreed = janie.pet.breed! // This is bad! Will cause a
crash!

In this simple example, Olive was not given a breed. She was a rescue from the
pound, so her breed is unknown. But she’s still a sweetheart.

If you assume that her breed has been set and force unwrap this property, it will
cause the program to crash. There’s a better way of handling this situation.

if let dogBreed = janie.pet.breed {
 print("Olive is a \(dogBreed).")
} else {
 print("Olive’s breed is unknown.")
}

This is pretty standard optional handling, but you can take advantage of this
structure to do some pretty complex operations. This can be incredibly helpful if you
have a lot of complicated data structures with many optional properties. Comment
out what you have so far and start over with the following types:

class Toy {

 enum Kind {
 case ball
 case zombie
 case bone
 case mouse
 }

 enum Sound {
 case squeak
 case bell
 }

 let kind: Kind
 let color: String
 var sound: Sound?

 init(kind: Kind, color: String, sound: Sound? = nil) {
 self.kind = kind
 self.color = color
 self.sound = sound
 }

Swift Apprentice Chapter 21: Error Handling

raywenderlich.com 399

}

class Pet {

 enum Kind {
 case dog
 case cat
 case guineaPig
 }

 let name: String
 let kind: Kind
 let favoriteToy: Toy?

 init(name: String, kind: Kind, favoriteToy: Toy? = nil) {
 self.name = name
 self.kind = kind
 self.favoriteToy = favoriteToy
 }
}

class Person {
 let pet: Pet?

 init(pet: Pet? = nil) {
 self.pet = pet
 }
}

A lot of raywenderlich.com team members own pets — but not all. Some pets have a
favorite toy and others don’t. Even further into this, some of these toys make noise
and others don’t.

For example, Tammy Coron’s evil cat is methodically plotting her death.

This cat’s favorite toy to chew on (besides Tammy) is a catnip mouse. This toy
doesn’t make any noise.

Swift Apprentice Chapter 21: Error Handling

raywenderlich.com 400

Ray has another team member, Felipe Marsetti, who lives in a condo and isn’t
allowed to have pets.

let janie = Person(pet: Pet(name: "Delia", kind: .dog,
 favoriteToy: Toy(kind: .ball,
 color: "Purple", sound: .bell)))
let tammy = Person(pet: Pet(name: "Evil Cat Overlord",
 kind: .cat, favoriteToy: Toy(kind: .mouse,
 color: "Orange")))
let felipe = Person()

You want to check to see if any of the team members has a pet with a favorite toy
that makes a sound. You can use optional chaining for this; it’s a quick way to walk
through a chain of optionals by adding a ? after every property or method that can
return nil. If any of the values in the chain was nil, the result will be nil as well. So
instead of having to test every optional along the chain, you simply test the result!

For example:

if let sound = janie.pet?.favoriteToy?.sound {
 print("Sound \(sound).")
} else {
 print("No sound.")
}

Janie’s pet — one of her pugs, not just any old pet — fulfills all of the conditions and
therefore the sound is accessible.

Try accessing the sound with Tammy and Felipe:

if let sound = tammy.pet?.favoriteToy?.sound {
 print("Sound \(sound).")
} else {
 print("No sound.")
}

if let sound = felipe.pet?.favoriteToy?.sound {
 print("Sound \(sound).")
} else {
 print("No sound.")
}

During each stage of this chain, the compiler checks whether or not each optional
property is present.

Swift Apprentice Chapter 21: Error Handling

raywenderlich.com 401

Since Tammy’s cat’s toy does not have a sound, the process bails out after
favoriteToy?. Since Felipe doesn’t have a pet at all, the process bails out after
pet?.

This is an awful lot of repetitive code. What if you wanted to iterate through the
entire array of team members to find this information?

Map and compactMap
Let’s say you want to create an array of pets that are owned by the team. First off, you
need to create an array of team members:

let team = [janie, tammy, felipe]

You want to iterate through this array and extract all pet names. You could use a for
loop, but you’ve already learned a better way to do this: map.

let petNames = team.map { $0.pet?.name }

This creates a new array of pet names by pulling out the pet name from each team
member in the array. You want to see what these values are, so why not print them
out?

for pet in petNames {
 print(pet)
}

The compiler generates a warning. Look at the output for this print statement:

Optional("Delia")
Optional("Evil Cat Overlord")
nil

Ew! That doesn’t look right. Instead of having a nice list of names, you have a bunch
of optional values and even a nil! This won’t do at all.

Swift Apprentice Chapter 21: Error Handling

raywenderlich.com 402

You could take this array, filter it and then call map again to unwrap all the values
that are not nil, but that seems rather convoluted. Iterating through an array of
optional values that you need to unwrap and ensure are not nil is a very common
operation.

There is a better way to accomplish this task: compactMap. Try out the following:

let betterPetNames = team.compactMap { $0.pet?.name }

for pet in betterPetNames {
 print(pet)
}

You should see a far more useful and user-friendly output:

Delia
Evil Cat Overlord

In general, compactMap does a regular map operation and then “compacts”, or
simplifies, the results. In this case, you’re using compactMap to compact the return
type [Optional<String>] into the simpler type [String]. Another common use of
compactMap is to turn an array of arrays into a single array.

So far you’ve learned how to do some informal error handling. Up next, you’ll learn
about the Error protocol to do some formal error handling.

Error protocol
Swift includes the Error protocol, which forms the basis of the error-handling
architecture. Any type that conforms to this protocol can be used to represent errors.

The Error protocol can be implemented by any type you define, but it’s especially
well-suited to enumerations. As you learned in Chapter 15, “Enumerations”,
enumerations are types with a fixed set of instances, so they’re ideal for representing
specific error types.

Create a new playground. You are going to start your own bakery and use it to learn
how to throw and handle errors using the Error protocol.

Add this code to your playground:

class Pastry {
 let flavor: String
 var numberOnHand: Int

Swift Apprentice Chapter 21: Error Handling

raywenderlich.com 403

 init(flavor: String, numberOnHand: Int) {
 self.flavor = flavor
 self.numberOnHand = numberOnHand
 }
}

enum BakeryError: Error {
 case tooFew(numberOnHand: Int)
 case doNotSell
 case wrongFlavor
}

The Error protocol tells the compiler that this enumeration can be used to represent
errors that can be thrown. At a bakery, you might not have enough of each item the
customer wants, or it could be the wrong flavor, or you may not sell it altogether.

Throwing errors
This is kind of cool, but what does your program do with these errors? It throws
them, of course! That’s the actual terminology you’ll see: throwing errors then
catching them.

Add this class to your playground:

class Bakery {
 var itemsForSale = [
 "Cookie": Pastry(flavor: "ChocolateChip", numberOnHand: 20),
 "PopTart": Pastry(flavor: "WildBerry", numberOnHand: 13),
 "Donut" : Pastry(flavor: "Sprinkles", numberOnHand: 24),
 "HandPie": Pastry(flavor: "Cherry", numberOnHand: 6)
]

 func orderPastry(item: String,
 amountRequested: Int,
 flavor: String) throws -> Int {
 guard let pastry = itemsForSale[item] else {
 throw BakeryError.doNotSell
 }
 guard flavor == pastry.flavor else {
 throw BakeryError.wrongFlavor
 }
 guard amountRequested <= pastry.numberOnHand else {
 throw BakeryError.tooFew(numberOnHand:
 pastry.numberOnHand)
 }
 pastry.numberOnHand -= amountRequested

 return pastry.numberOnHand

Swift Apprentice Chapter 21: Error Handling

raywenderlich.com 404

 }
}

First off you need to have some items to sell. Each item needs to have a flavor and an
amount on hand. When the customer orders a pastry from you, they need to tell you
what pastry they want, what flavor they want, and how many they want. Customers
can be incredibly demanding. :]

First, you need to check if you even carry what the customer wants. If the customer
tries to order albatross with wafers, you don’t want the bakery to crash. After you
verify that the bakery actually carries the item the customer wants, you need to
check if you have the requested flavor and if you have enough of that item to fulfill
the customer’s order.

As this example shows, you throw errors using throw. The errors you throw must be
instances of a type that conforms to Error. A function (or method) that throws errors
and does not immediately handle them must make this clear by adding throws to its
declaration.

Next, try out your bakery:

let bakery = Bakery()
bakery.orderPastry(item: "Albatross",
 amountRequested: 1,
 flavor: "AlbatrossFlavor")

The code above does not compile. What’s wrong? Oh right — you need to catch the
error and do something with it.

Handling errors
After your program throws an error, you need to handle that error. There are two
ways to approach this problem: You can handle your errors immediately, or you can
bubble them up to another level.

To choose your approach, you need to think about where it makes the most sense to
handle the error. If it makes sense to handle the error immediately, then do so. If
you’re in a situation where you have to alert the user and have her take action, but
you’re several function calls away from a user interface element, then it makes sense
to bubble up the error until you reach the point where you can alert the user.

Swift Apprentice Chapter 21: Error Handling

raywenderlich.com 405

It’s entirely up to you when to handle the error, but not handling it isn’t an option.
Swift requires you to handle your error at some point in the chain, or your program
won’t compile.

Replace the previous line of code with this:

do {
 try bakery.orderPastry(item: "Albatross",
 amountRequested: 1,
 flavor: "AlbatrossFlavor")
} catch BakeryError.doNotSell {
 print("Sorry, but we don’t sell this item.")
} catch BakeryError.wrongFlavor {
 print("Sorry, but we don’t carry this flavor.")
} catch BakeryError.tooFew {
 print("Sorry, we don’t have enough items to fulfill your
 order.")
}

Code that can throw errors must always be inside a do block which creates a new
scope. Even more, the exact points where errors can be thrown must be marked with
try. The try above doesn’t actually do anything. It serves as a reminder so that
whoever reads your code can easily understand what can go wrong.

You’re now catching each error condition and providing useful feedback to the user
about why you can’t fulfill their order.

Not looking at the detailed error
If you don’t really care about the details of the error you can use try? to wrap the
result of a function (or method) in an optional. The function will then return nil
instead of throwing an error. No need to setup a do {} catch {} block.

For example:

let remaining = try? bakery.orderPastry(item: "Albatross",
 amountRequested: 1,
 flavor:
"AlbatrossFlavor")

Swift Apprentice Chapter 21: Error Handling

raywenderlich.com 406

This is nice and short to write, but the downside is that you don’t get any details if
the request fails.

Stoping your program on an error
Sometimes you know for sure that your code is not going to fail. For example, if know
you just restocked the cookie jar, you know you’ll be able to order a cookie. Add:

do {
 try bakery.orderPastry(item: "Cookie",
 amountRequested: 1,
 flavor: "ChocolateChip")
}
catch {
 fatalError()
}

Swift gives you a short way to write the same thing:

try! bakery.orderPastry(item: "Cookie", amountRequested: 1,
 flavor: "ChocolateChip")

It’s delicious syntactic sugar, but know that your program will halt if the no error
assumption is violated. So, just as with implicitly unwrapped optionals, you need to
be extra careful when using try!.

Advanced error handling
Cool, you know how to handle errors! That’s neat, but how do you scale your error
handling to the larger context of a complex app?

PugBot
The sample project you’ll work with in this second half of the chapter is PugBot. The
PugBot is cute and friendly, but sometimes it gets lost and confused.

As the programmer of the PugBot, it’s your responsibility to make sure it doesn’t get
lost on the way home from your PugBot lab.

Swift Apprentice Chapter 21: Error Handling

raywenderlich.com 407

You’ll learn how to make sure your PugBot finds its way home by throwing an error if
it steers off course.

First, you need to set up an enum containing all of the directions your PugBot can
move:

enum Direction {
 case left
 case right
 case forward
}

You’ll also need an error type to indicate what can go wrong:

enum PugBotError: Error {
 case invalidMove(found: Direction, expected: Direction)
 case endOfPath
}

Here, associated values are used to further explain what went wrong. With any luck,
you’ll be able to use these to rescue a lost PugBot!

Swift Apprentice Chapter 21: Error Handling

raywenderlich.com 408

Last but not least, create your PugBot class:

class PugBot {
 let name: String
 let correctPath: [Direction]
 private var currentStepInPath = 0

 init(name: String, correctPath: [Direction]) {
 self.correctPath = correctPath
 self.name = name
 }

 func move(_ direction: Direction) throws {
 guard currentStepInPath < correctPath.count else {
 throw PugBotError.endOfPath
 }
 let nextDirection = correctPath[currentStepInPath]
 guard nextDirection == direction else {
 throw PugBotError.invalidMove(found: direction,
 expected: nextDirection)
 }
 currentStepInPath += 1
 }

 func reset() {
 currentStepInPath = 0
 }
}

When creating a PugBot, you tell it how to get home by passing it the correct
directions. move(_:) causes the PugBot to move in the corresponding direction. If
at any point the program notices the PugBot isn’t doing what it’s supposed to do, it
throws an error.

Give your PugBot a test:

let pug = PugBot(name: "Pug",
 correctPath:
[.forward, .left, .forward, .right])

func goHome() throws {
 try pug.move(.forward)
 try pug.move(.left)
 try pug.move(.forward)
 try pug.move(.right)
}

do {
 try goHome()
} catch {
 print("PugBot failed to get home.")

Swift Apprentice Chapter 21: Error Handling

raywenderlich.com 409

}

Every single command in goHome() must pass for the method to complete
successfully. The moment an error is thrown, your PugBot will stop trying to get
home and will stay put until you come and rescue it.

Handling multiple errors
Since you’re a smart developer, you’ve noticed that you’re not handling errors in
goHome(). Instead, you’ve marked that function with throws as well, leaving the
error handling up to the caller of the function.

You might benefit from a function that can move the PugBot and handle errors at the
same time, so you don’t have to handle errors every time you move the PugBot.

func moveSafely(_ movement: () throws -> ()) -> String {
 do {
 try movement()
 return "Completed operation successfully."
 } catch PugBotError.invalidMove(let found, let expected) {
 return "The PugBot was supposed to move \(expected),
 but moved \(found) instead."
 } catch PugBotError.endOfPath {
 return "The PugBot tried to move past the end of the path."
 } catch {
 return "An unknown error occurred."
 }
}

This function takes a movement function (like goHome()) or a closure containing
movement function calls as a parameter, calls it then handles any errors it throws.

You might notice that you have to add a default case to the end. What gives? You’ve
exhausted the cases in your PugBotError enum, so why is the compiler hassling
you?

Unfortunately, at this point, Swift’s do-try-catch system isn’t type-specific. There’s
no way to tell the compiler that it should only expect PugBotErrors. To the compiler,
that isn’t exhaustive, because it doesn’t handle each and every possible error that it
knows about, so you still need a default case. Now you can use your function to
handle movement in a safe manner:

pug.reset()
moveSafely(goHome)

pug.reset()

Swift Apprentice Chapter 21: Error Handling

raywenderlich.com 410

moveSafely {
 try pug.move(.forward)
 try pug.move(.left)
 try pug.move(.forward)
 try pug.move(.right)
}

Thanks to trailing closure syntax, your movement calls are cleanly wrapped in the
call to moveSafely(_:). Here, your PugBot will find her way home safely.

Rethrows
A function that takes a throwing closure as a parameter has to make a choice: either
catch every error or be a throwing function. Let’s say you want a utility function to
perform a certain movement, or set of movements, several times in a row. You could
define this function as follows:

func perform(times: Int, movement: () throws -> ()) rethrows {
 for _ in 1...times {
 try movement()
 }
}

Notice the rethrows here. This function does not handle errors like
moveSafely(_:). Instead, it leaves error handling up to the caller of the function,
such as goHome(). By using rethrows instead of throws, the above function
indicates that it will only rethrow errors thrown by the function passed into it but
never errors of its own. And that concludes the PugBot example. Now let’s look at
asynchronous errors.

Swift Apprentice Chapter 21: Error Handling

raywenderlich.com 411

Error handling for asynchronous code
The do-try-catch mechanism works only for synchronous code. You can’t use
throws to throw errors if you execute your code asynchronously. Swift has you
covered, but you first need to understand how to work with asynchronous closures
and Grand Central Dispatch (GCD).

GCD
Modern operating environments are multi-threaded, meaning work can happen
simultaneously on multiple threads of execution. For example, all networking
operations execute in a background thread so they don’t block the user interface that
happens on the main thread.

In practice, working in multi-threaded environments can be very tricky due to the
possibility of race conditions. For example, just as one thread is writing some data,
another thread might be trying to read it and get a half-baked value, but only very
occasionally, making it very difficult to diagnose this problem.

You use synchronization to mitigate race conditions. Although Swift doesn’t yet
have a native concurrency model, the GCD framework simplifies many of these issues
since it’s an abstraction on top of threads that makes doing background work less
error-prone.

Instead of exposing raw threads to you, GCD provides the concept of a work queue.
You put work on a queue using a closure and that closure in its body can dispatch
work onto another GCD queue.

• A serial queue performs closures on it sequentially.

• A concurrent queue can dispatch multiple closures at the same time.

GCD queues are thread-safe, so you can add closures to a queue from any other
queue.

To study this concept in motion, you’ll create a dispatch function execute that runs
a closure on the background queue to perform a lengthy calculation, and then passes
the result to a closure on the main queue when it completes. You’ll copy the data,
rather than sharing it, to avoid race conditions.

First, define these functions:

//1
func log(message: String) {

Swift Apprentice Chapter 21: Error Handling

raywenderlich.com 412

 let thread = Thread.current.isMainThread ? "Main"
 : "Background"
 print("\(thread) thread: \(message).")
}

//2
func addNumbers(upTo range: Int) -> Int {
 log(message: "Adding numbers...")
 return (1...range).reduce(0, +)
}

Here’s what you’ve done:

1. log(message:) uses the ternary operator to check if the current thread is the
main or the background queue then logs a message to the console.

2. addNumbers(upTo:) calculates the sum of a given range of numbers, and it
represents a complicated task that must run on a background thread.

Create a queue to run tasks in the background:

let queue = DispatchQueue(label: "queue")

Here you created a serial queue, where tasks execute one at a time in FIFO (first in
first out) order.

Note: If you defined a concurrent queue you’d have to deal with all of the
issues of concurrency, which is beyond the scope of this book. Work dispatched
from a specific serial queue doesn’t need to know about simultaneous
interference from another closure on the same serial queue. Concurrent
queues and sharing common data between queues is another story to consider
in the future. Check out our Concurrency by Tutorials book if you want to
learn more about concurrent queues.

Next, create this method:

// 1
func execute<Result>(backgroundWork: @escaping () -> Result,
 mainWork: @escaping (Result) -> ()) {
 // 2
 queue.async {
 let result = backgroundWork()
 // 3
 DispatchQueue.main.async {
 mainWork(result)

Swift Apprentice Chapter 21: Error Handling

raywenderlich.com 413

 }
 }
}

There’s quite a lot going on here, so take it in steps:

1. Make the function generic because the backgroundWork closure returns a generic
result, while the mainWork closure works with that result. You mark both closures
with the @escaping attribute because they escape the function — you use them
asynchronously, so they get called after the function returns. Closures are non-
escaping by default, meaning that when the function using the closure returns it
will never be used again.

2. Run the backgroundWork closure asynchronously on the serial queue previously
defined then store its return value.

3. Dispatch the mainWork closure asynchronously on the main queue and use the
backgroundWork closure’s result as its argument.

Time to see your new method in action — add this to your code:

execute(backgroundWork: { addNumbers(upTo: 100) },
 mainWork: { log(message: "The sum is \($0)") })

Here you add the numbers on the background thread and print the result to the
console on the main thread, giving you this output:

Background thread: Adding numbers...
Main thread: The sum is 5050.

Now that you know how GCD works, you’re ready to handle errors for asynchronous
code.

Result
You use the Result type defined in the Swift standard library to capture errors
thrown by asynchronous functions. Here’s how it is defined:

enum Result<Success, Failure> where Failure: Error {
 case success(Success)
 case failure(Failure)
}

As you can see, this enumeration is generic and handles both types of results:
Success can be any valid Swift type, while Failure must conform to Error.

Swift Apprentice Chapter 21: Error Handling

raywenderlich.com 414

Let’s see how this works with tutorial editing on the website:

// 1
struct Tutorial {
 let title: String
 let author: String
}

// 2
enum TutorialError: Error {
 case rejected
}

// 3
func feedback(for tutorial: Tutorial) -> Result<String,
 TutorialError> {
 Bool.random() ? .success("published") : .failure(.rejected)
}

Here’s what the above code does:

1. Define title and author for Tutorial.

2. Declare TutorialError for rejected tutorials that are poorly written or have
more than 4000 words.

3. Use random() to return .success("published") or .failure(.rejected) from
feedback(for:).

Time to edit tutorials:

func edit(_ tutorial: Tutorial) {
 queue.async {
 // 1
 let result = feedback(for: tutorial)
 DispatchQueue.main.async {
 switch result {
 // 2
 case let .success(data):
 print("\(tutorial.title) by \(tutorial.author) was
 \(data) on the website.")
 // 3
 case let .failure(error):
 print("\(tutorial.title) by \(tutorial.author) was
 \(error).")
 }
 }
 }
}

let tutorial = Tutorial(title: "What’s new in Swift 5.1",

Swift Apprentice Chapter 21: Error Handling

raywenderlich.com 415

 author: "Cosmin Pupăză")
edit(tutorial)

This is how it all works:

1. Run feedback(for:) asynchronously on queue and store its result.

2. Print a suitable message asynchronously on the main queue if you publish the
tutorial.

3. Handle the corresponding error asynchronously on the main queue if you reject
the tutorial.

You may use Result for synchronous code too if you want to do error handling with
do-try-catch instead:

let result = feedback(for: tutorial)
do {
 let data = try result.get()
 print("\(tutorial.title) by \(tutorial.author) was
 \(data) on the website.")
} catch {
 print("\(tutorial.title) by \(tutorial.author) was \(error).")
}

Here you use get() to return the value of result and handle error accordingly if
there’s no valid data for tutorial.

Challenges
Before moving on, here are some challenges to test your knowledge of error
handling. It is best if you try to solve them yourself, but solutions are available if you
get stuck. These came with the download or are available at the printed book’s
source code link listed in the introduction.

Challenge 1: Even strings
Write a throwing function that converts a String to an even number, rounding down
if necessary.

Challenge 2: Safe division
Write a throwing function that divides type Int types.

Swift Apprentice Chapter 21: Error Handling

raywenderlich.com 416

Key points
• A type can conform to the Error protocol to work with Swift’s error-handling

system.

• Any function that can throw an error, or call a function that can throw an error,
has to be marked with throws or rethrows.

• When calling an error-throwing function, you must embed the function call in a do
block. Within that block, you try the function, and if it fails, you catch the error.

• You use GCD and Result to handle errors asynchronously.

• An escaping closure can be used after the corresponding function returns.

Swift Apprentice Chapter 21: Error Handling

raywenderlich.com 417

22Chapter 22: Encoding &
Decoding Types
By Eli Ganim

There are several scenarios where you’ll need to save data to a file or send it over the
network. In this chapter, you’ll learn how to achieve these tasks by converting your
instances to another representation, like a string or a stream of bytes. This process is
called encoding, also known as serialization.

The reverse process of turning the data into an instance is called decoding, or
deserialization.

Imagine you have an instance you want to write to a file. The instance itself cannot
be written as-is to the file, so you need to encode it into another representation, such
as a stream of bytes:

raywenderlich.com 418

Once the data is encoded and saved to a file, you can turn it back into an instance
whenever you want by using a decoder:

Encodable and Decodable protocols
The Encodable protocol is used by types that can be encoded to another
representation. It declares a single method:

func encode(to: Encoder) throws

...which the compiler generates for you if all the stored properties of that type
conform to Encodable as well. You’ll learn more about this later on in the chapter.

The Decodable protocol is used by types that can be decoded. It declares just a single
initializer:

init(from decoder: Decoder) throws

You will know when and how to implement these methods by the end of this chapter.

What is Codable?
Codable is a protocol that a type can conform to, to declare that it can be encoded
and decoded. It’s basically an alias for the Encodable and Decodable protocols.

typealias Codable = Encodable & Decodable

Swift Apprentice Chapter 22: Encoding & Decoding Types

raywenderlich.com 419

Automatic encoding and decoding
There are many types in Swift that are codable out of the box: Int, String, Date,
Array and many other types from the Standard Library and the Foundation
framework. If you want your type to be codable, the simplest way to do it is by
conforming to Codable and making sure all its stored properties are also codable.

For example, let’s say you own a toy factory and you have this struct to store
employee data:

struct Employee {
 var name: String
 var id: Int
}

All you need to do to be able to encode and decode this type to conform to the
Codable protocol, like so:

struct Employee: Codable {
 var name: String
 var id: Int
}

Wow, that was easy. You were able to do it because both name (String) and id (Int)
are codable.

This works well when you’re only using types that are already Codable. But what if
your type includes other custom types as properties? For example, looking at your
Employee struct, assume that it also has an optional favoriteToy property:

struct Employee: Codable {
 var name: String
 var id: Int
 var favoriteToy: Toy?
}

struct Toy: Codable {
 var name: String
}

By making sure Toy also conforms to Codable, you maintain the overall conformance
to Codable for Employee as well.

All collections types, like Array and Dictionary are also codable if they contain
codable types.

Swift Apprentice Chapter 22: Encoding & Decoding Types

raywenderlich.com 420

Encoding and decoding custom types
There are several representations you can encode to or decode from, such as XML or
a Property List. In this section, you’ll learn how to encode to and decode from JSON,
by using Swift’s JSONEncoder and JSONDecoder classes.

JSON stands for JavaScript Object Notation, and is one of the most popular ways to
serialize data. It’s easily readable by humans and easy for computers to parse and
generate.

For example, if you were to encode an instance of type Employee to JSON, it might
look something like this:

{ "name": "John Appleseed", "id": 7 }

You can easily understand how the Employee instance looked before it was serialized
into JSON.

JSONEncoder and JSONDecoder
Once you have a codable type, you can use JSONEncoder to convert your type to Data
that can be either written to a file or sent over the network. Assume you have this
employee instance:

let toy1 = Toy(name: "Teddy Bear");
let employee1 = Employee(name: "John Appleseed", id: 7,
favoriteToy: toy1)

John’s birthday is coming up and you want to give him his favorite toy as a gift. You
need to send this data to the gift department. Before you can do that, you need to
encode it, like so:

let jsonEncoder = JSONEncoder()
let jsonData = try jsonEncoder.encode(employee1)

You’ll notice that you need to use try because encode(_:) might fail and throw an
error.

If you try to print jsonData like this:

print(jsonData)

You’ll see that Xcode omits the data and only provides the number of bytes in
jsonData. This is fine, because jsonData contains an unreadable representation of

Swift Apprentice Chapter 22: Encoding & Decoding Types

raywenderlich.com 421

employee1. If you would like to create a readable version of this JSON as a string, you
can use theString initializer:

let jsonString = String(data: jsonData, encoding: .utf8)!
print(jsonString)
// {"name":"John Appleseed","id":7,"favoriteToy":{"name":"Teddy
Bear"}}

Now you can send jsonData or jsonString over to the gift department using their
special gift API.

If you want to decode the JSON data back into an instance, you need to use
JSONDecoder:

let jsonDecoder = JSONDecoder()
let employee2 = try jsonDecoder.decode(Employee.self, from:
jsonData)

Note that you need to tell the decoder what type to decode with Employee.self.

By design, it’s specified at compilation time as it prevents a security vulnerability
where someone on the outside might try to inject a type you weren’t expecting. It
also plays well with Swift’s natural preference for static types.

Renaming properties with CodingKeys
It turns out that the gifts department API requires that the employee ID appear as
employeeId instead of id. Luckily, Swift provides a solution to this kind of problem.

CodingKey protocol and CodingKeys enum
The CodingKeys enum, which conforms to CodingKey protocol, lets you rename
specific properties in case the serialized format doesn’t match the requirements of
the API.

Add the nested enumeration CodingKeys like this:

struct Employee: Codable {
 var name: String
 var id: Int
 var favoriteToy: Toy?

 enum CodingKeys: String, CodingKey {
 case id = "employeeId"

Swift Apprentice Chapter 22: Encoding & Decoding Types

raywenderlich.com 422

 case name
 case favoriteToy
 }
}

There are several things to note here:

1. CodingKeys is a nested enumeration in your type.

2. It has to conform to CodingKey.

3. You also need String as the raw type, since the keys must be either strings or
integers.

4. You have to include all properties in the enumeration, even if you don’t plan to
rename them.

5. By default, this enumeration is created by the compiler, but when you need to
rename a key you need to implement it yourself.

Now if you print the JSON, you’ll see that id has changed to employeeId.

{ "employeeId": 7, "name": "John Appleseed", "favoriteToy":
{"name": "Teddy Bear"}}

Manual encoding and decoding
You try to send the data over to the gifts department, and again the data gets
rejected. This time they claim that the information of the gift you want to send to the
employee should not be inside a nested type, but rather as a property called gift. So
the JSON should actually look like this:

{ "employeeId": 7, "name": "John Appleseed", "gift": "Teddy
Bear" }

In this case you can’t use CodingKeys, since you need to alter the structure of the
JSON and not just rename properties. You need to write your own encoding and
decoding logic.

Swift Apprentice Chapter 22: Encoding & Decoding Types

raywenderlich.com 423

The encode function
As mentioned earlier in the chapter, Codable is actually just a typealias for the
Encodable and Decodable protocols. You need to implement encode(to: Encoder)
and describe how to encode each property.

It might sound complicated, but it’s pretty simple. First, update CodingKeys to use
the key gift instead of favoriteToy:

enum CodingKeys: String, CodingKey {
 case id = "employeeId"
 case name
 case gift
}

Then, you need to remove Employee’s conformance to Codable and add this
extension:

extension Employee: Encodable {
 func encode(to encoder: Encoder) throws {
 var container = encoder.container(keyedBy: CodingKeys.self)
 try container.encode(name, forKey: .name)
 try container.encode(id, forKey: .id)
 try container.encode(favoriteToy?.name, forKey: .gift)
 }
}

First, you get the container of the encoder back, giving you a view into the storage
of the encoder that you can access with keys. Note how you choose which properties
to encode for which keys. Importantly, you flatten favoriteToy?.name down to the
.gift key. If you stop now, you’ll get the following error:

'Employee' does not conform to expected type 'Decodable'

This is because you removed the conformance to Codable and only added
conformance to Encodable. For now you can comment out the code that decodes
jsonString to employee2. If you print jsonString once more, this is what you’ll
get:

{"name":"John Appleseed","gift":"Teddy Bear","employeeId":7}

Swift Apprentice Chapter 22: Encoding & Decoding Types

raywenderlich.com 424

The decode function
Once the data arrives at the gift department, it needs to be converted to an instance
in the department’s system. Clearly, the gift department needs a decoder. Add the
following code to your playground to make Employee conform to Decodable, and
thus also Codable:

extension Employee: Decodable {
 init(from decoder: Decoder) throws {
 let values = try decoder.container(keyedBy: CodingKeys.self)
 name = try values.decode(String.self, forKey: .name)
 id = try values.decode(Int.self, forKey: .id)
 if let gift = try values.decode(String?.self, forKey: .gift)
{
 favoriteToy = Toy(name: gift)
 }
 }
}

Here you’re pretty much doing the opposite of what you did in the encode method
using the decoder’s keyed storage container.

encodeIfPresent and decodeIfPresent
It turns out not all employees have a favorite toy. In this case, the encode method
will create a JSON that looks like this:

{"name":"John Appleseed","gift":null,"employeeId":7}

In order to fix this, you can use encodeIfPresent so the encode method will look
like this:

extension Employee: Encodable {
 func encode(to encoder: Encoder) throws {
 var container = encoder.container(keyedBy: CodingKeys.self)
 try container.encode(name, forKey: .name)
 try container.encode(id, forKey: .id)
 try container.encodeIfPresent(favoriteToy?.name,
forKey: .gift)
 }
}

Swift Apprentice Chapter 22: Encoding & Decoding Types

raywenderlich.com 425

Now the JSON won’t contain a gift key if the employee doesn’t have a favorite toy.

Next, update the decoder using decodeIfPresent:

extension Employee: Decodable {
 init(from decoder: Decoder) throws {
 let values = try decoder.container(keyedBy: CodingKeys.self)
 name = try values.decode(String.self, forKey: .name)
 id = try values.decode(Int.self, forKey: .id)
 if let gift = try values.decodeIfPresent(String.self,
forKey: .gift) {
 favoriteToy = Toy(name: gift)
 }
 }
}

Writing tests for the Encoder and Decoder
If at any time you change your encoder and forget to update the decoder (or vice
versa) you might get nasty errors at runtime. In order to avoid this situation, it’s
recommended that you write unit tests to make sure you never break the encoding or
decoding logic.

To do that you need to first import the XCTest framework. Add this at the top of the
playground:

import XCTest

Then you should add a test class and implement the setUp method to initialize a
JSONEncoder and JSONDecoder. Also initialize one Toy and one Employee instance,
so you have them ready to play with.

Add this at the end of the playground:

class EncoderDecoderTests: XCTestCase {
 var jsonEncoder: JSONEncoder!
 var jsonDecoder: JSONDecoder!
 var toy1: Toy!
 var employee1: Employee!

 override func setUp() {
 super.setUp()
 jsonEncoder = JSONEncoder()
 jsonDecoder = JSONDecoder()
 toy1 = Toy(name: "Teddy Bear")
 employee1 = Employee(name: "John Appleseed", id: 7,

Swift Apprentice Chapter 22: Encoding & Decoding Types

raywenderlich.com 426

 favoriteToy: toy1)
 }
}

The next step is to add the tests themselves. Remember that all tests have to start
with test.

Add this inside the class EncoderDecoderTests. The contents of the methods should
look familiar, since it’s mostly a copy of what you previously wrote when you learned
how to use encoders and decoders.

func testEncoder() {
 let jsonData = try? jsonEncoder.encode(employee1)
 XCTAssertNotNil(jsonData, "Encoding failed")

 let jsonString = String(data: jsonData!, encoding: .utf8)!
 XCTAssertEqual(jsonString, "{\"name\":\"John Appleseed\",
\"gift\":\"Teddy Bear\",\"employeeId\":7}")
}

func testDecoder() {
 let jsonData = try! jsonEncoder.encode(employee1)
 let employee2 = try? jsonDecoder.decode(Employee.self, from:
jsonData)
 XCTAssertNotNil(employee2)

 XCTAssertEqual(employee1.name, employee2!.name)
 XCTAssertEqual(employee1.id, employee2!.id)
 XCTAssertEqual(employee1.favoriteToy?.name,
 employee2!.favoriteToy?.name)
}

The most important thing here is the usage of XCTAssert methods. They guarentee
the logic is correct and that your encoder and decoder are working properly.

There’s only one thing missing to start using the tests. As explained in Chapter 18,
for the playground to actually run the tests, add this at the end of the playground:

EncoderDecoderTests.defaultTestSuite.run()

Once you run the playground, you should see something similar to this printed:

Test Suite 'EncoderDecoderTests' started at ...
Test Case '-[__lldb_expr_2.EncoderDecoderTests testDecoder]'
started.
Test Case '-[__lldb_expr_2.EncoderDecoderTests testDecoder]'
passed (0.781 seconds).
Test Case '-[__lldb_expr_2.EncoderDecoderTests testEncoder]'
started.

Swift Apprentice Chapter 22: Encoding & Decoding Types

raywenderlich.com 427

Test Case '-[__lldb_expr_2.EncoderDecoderTests testEncoder]'
passed (0.004 seconds).
Test Suite 'EncoderDecoderTests' passed at ...
 Executed 2 tests, with 0 failures (0 unexpected) in 0.785
(0.788) seconds

Challenges
Before moving on, here are some challenges to test your knowledge of encoding,
decoding and serialization. It is best if you try to solve them yourself, but solutions
are available if you get stuck. These came with the download or are available at the
printed book’s source code link listed in the introduction.

Challenge 1: Spaceship
Given the structures below, make the necessary modifications to make Spaceship
codable:

struct Spaceship {
 var name: String
 var crew: [Spaceman]
}

struct Spaceman {
 var name: String
 var race: String
}

Challenge 2: Custom keys
It appears that the spaceship’s interface is different than that of the outpost on Mars.
The Mars outpost expects to get the spaceship’s name as spaceship_name. Make the
necessary modifications so that encoding the structure would return the JSON in the
correct format.

Challenge 3: Write a decoder
You received a transmission from planet Earth about a new spaceship. Write a
custom decoder to convert this JSON into a Spaceship. This is the incoming
transmission:

{"spaceship_name":"USS Enterprise", "captain":{"name":"Spock",

Swift Apprentice Chapter 22: Encoding & Decoding Types

raywenderlich.com 428

"race":"Human"}, "officer":{"name": "Worf", "race":"Klingon"}}

Hint: There are no ranks in your type, just an array of crewmen, so you’ll need to use
different keys for encoding and decoding.

Challenge 4: Decoding property lists
You intercepted some weird transmissions from the Klingon, which you can’t decode.
Your scientists deduced that these transmissions are encoded with a
PropertyListEncoder, and that they’re also information about spaceships. Try your
luck with decoding this message:

var klingonSpaceship = Spaceship(name: "IKS NEGH’VAR", crew: [])
let klingonMessage = try
PropertyListEncoder().encode(klingonSpaceship)

Key points
• You need to encode (or serialize) an instance before you can save it to a file or

send it over the web.

• You need to decode (or deserialize) to bring it back from a file or the web as an
instance.

• Your type should conform to the Codable protocol to support encoding and
decoding.

• If all stored properties of your type are Codable, then the compiler can
automatically implement the requirements of Codable for you.

• JSON is the most common encoding in modern applications and web services, and
you can use JSONEncoder and JSONDecoder to encode and decode your types to
and from JSON.

• Codable is very flexible and can be customized to handle almost any valid JSON.

• Codable can be used with serialization formats beyond JSON.

Swift Apprentice Chapter 22: Encoding & Decoding Types

raywenderlich.com 429

23Chapter 23: Memory
Management
By Cosmin Pupăză

You explored elementary memory management in Chapter 14, “Advanced Classes”,
when you explored the class lifetime and automatic reference counting (ARC). In
most cases, memory management in Swift works out of the box with little to no
effort from you.

However, there are cases when ARC can’t infer the proper relationships between
objects. That’s where you come in.

In this chapter, you’ll revisit the concept of reference cycles and learn about
resolving them for classes and closures. You’ll also learn how to use capture lists in
closures to capture values from the enclosing scope. By the end of the chapter, you’ll
master the art of breaking reference cycles, but before you get to that point, you’ll
start by learning how they are formed.

raywenderlich.com 430

Reference cycles for classes
Two class instances that hold a strong reference to each other create a strong
reference cycle that leads to a memory leak. That’s because each instance keeps
the other one alive, so their reference counts never reach zero.

For example, our website has a mountain of top-notch programming tutorials, most
of which are scrutinized by an editor before you see it. You can model these tutorials
with the following class:

class Tutorial {
 let title: String
 var editor: Editor?

 init(title: String) {
 self.title = title
 }

 deinit {
 print("Goodbye tutorial \(title)!")
 }
}

In addition to a title propery, a tutorial might have an editor so it’s marked as an
optional. Remember from Chapter 14, “Advanced Classes”, that Swift calls the
deinitializer automatically right before it releases the object from memory and its
reference count becomes zero.

Now that you’ve defined an editor for each tutorial, you need to declare an Editor
class, like so:

class Editor {
 let name: String
 var tutorials: [Tutorial] = []

 init(name: String) {
 self.name = name
 }

 deinit {
 print("Goodbye editor \(name)!")
 }
}

Each editor has a name and a list of tutorials they have edited. The tutorials
property is an array so you can add to it.

Swift Apprentice Chapter 23: Memory Management

raywenderlich.com 431

Now define a brand new tutorial for publishing and an editor to ensure it meets our
high standards:

do {
 let tutorial = Tutorial(title: "Memory management")
 let editor = Editor(name: "Ray")
}

These are placed in a scope (created with do {}) so that as soon as they go out of
scope the references to them are dropped and they are correctly deallocated.
Everything is working fine.

Something happens when you instead make a relationship between the two objects,
like this:

do {
 let tutorial = Tutorial(title: "Memory management")
 let editor = Editor(name: "Ray")
 tutorial.editor = editor
 editor.tutorials.append(tutorial)
}

Although both objects go out of scope, deinitializers aren’t called and nothing prints
to the console — bummer! That’s because you’ve just created a reference cycle
between the tutorial and its corresponding editor. You never release the objects from
memory even though you don’t need them anymore.

Now that you understand how reference cycles happen, you can break them. Weak
references to the rescue!

Weak references
Weak references are references that don’t play any role in the ownership of an
object. The great thing about using them is that they automatically detect when the
underlying object has gone away. This is why they are always declared with an
optional type. They become nil once the reference count reaches zero.

A tutorial doesn’t always have an editor assigned, so it makes sense to model it as an
optional type. Also, a tutorial doesn't own the editor so it makes perfect sense to
make it a weak reference as well. Change the property’s declaration in the Tutorial
class to the following:

weak var editor: Editor?

Swift Apprentice Chapter 23: Memory Management

raywenderlich.com 432

You break the reference cycle with the weak keyword.

Both deinitializers now run and print the following output to the console:

Goodbye editor Ray!
Goodbye tutorial Memory management!

Note: You can’t define a weak reference as a constant because it will be set to
nil during runtime when the underlying object goes away.

Unowned references
You have another means to break reference cycles: Unowned references, which
behave much like weak ones in that they don’t change the object’s reference count.

Unlike weak references, however, they always expect to have a value — you can’t
declare them as optionals. Think of it this way: A tutorial cannot exist without an
author. Somebody has to write words for the editor to redline. :] At the same time, a
tutorial does not "own" the author so the reference should be unowned.

Modify the Tutorial class as shown below:

class Tutorial {
 let title: String
 let author: Author
 weak var editor: Editor?

 init(title: String, author: Author) {
 self.title = title
 self.author = author
 }

 deinit {
 print("Goodbye tutorial \(title)!")
 }
}

Add the following Author class as well:

class Author {
 let name: String
 var tutorials: [Tutorial] = []

 init(name: String) {
 self.name = name
 }

Swift Apprentice Chapter 23: Memory Management

raywenderlich.com 433

 deinit {
 print("Goodbye author \(name)!")
 }
}

Here you guarantee that a tutorial always has an author, hence, Authoris not
declared as optional. On the other hand, tutorials is a variable, so it can be
modified after initialization.

An error persists in your code, however. The tutorial doesn’t yet have an author.
Modify its declaration as follows:

do {
 let author = Author(name: "Cosmin")
 let tutorial = Tutorial(title: "Memory management",
 author: author)
 let editor = Editor(name: "Ray")
 author.tutorials.append(tutorial)
 tutorial.editor = editor
 editor.tutorials.append(tutorial)
}

Here you release the editor but not the rest of the objects. And you’re making
another reference cycle, this time between the tutorial and its corresponding author.
Each tutorial on the website has an author. There are no anonymous authors here!
The tutorial’s author property is the perfect match for an unowned reference since
it’s never nil. Change the property’s declaration in the Tutorial class to the
following:

class Tutorial {
 unowned let author: Author
 // original code
}

This code breaks the reference cycle with the unowned keyword. All the deinit
methods run and print the following output to the console:

Goodbye editor Ray!
Goodbye author Cosmin!
Goodbye tutorial Memory management!

That’s it for reference cycles for classes. Now let’s look at reference cycles with
closures.

Swift Apprentice Chapter 23: Memory Management

raywenderlich.com 434

Reference cycles for closures
You learned in Chapter 8, “Collection Iteration with Closures”, that closures capture
values from the enclosing scope. Because Swift is a safe language, closures extend
the lifetime of any object they use in order to guarantee those objects are alive and
valid. This automatic safety is nice, but the downside of this is you can inadvertently
create a reference cycle if you extend the lifetime of an object that itself captures the
closure. Closures, you see, are reference types themselves.

For example, add a property that computes the tutorial’s description to the Tutorial
class like this:

lazy var description: () -> String = {
 "\(self.title) by \(self.author.name)"
}

Remember that a lazy property isn’t assigned until its first use and that self is only
available after initialization.

Print the tutorial’s description to the console. Add the following code right after the
tutorial object’s declaration:

print(tutorial.description())

You created another strong reference cycle between the tutorial object and the
closure by capturing self, so only the author’s deinit method runs.

To break the cycle, you’ll need to know about a language feature called capture lists.

Note: Swift requires self inside of closures. It’s a good reminder that a
reference to the current object is being captured. The only exception to this
rule is with non-escaping closures, which you’ve learned about in Chapter 21,
“Error Handling”.

Capture lists
Capture lists are a language feature to help you control exactly how a closure
extends the lifetime of objects it refers to. Simply, they are a list of variables captured
by a closure. A capture list appears at the very beginning of the closure before any
arguments.

Swift Apprentice Chapter 23: Memory Management

raywenderlich.com 435

First, consider the following code snippet with no capture list:

var counter = 0
var f = { print(counter) }
counter = 1
f()

The closure f() prints the counter variable’s updated value of 1 because it has a
reference to the counter variable. Now add a capture list [c = counter]:

counter = 0
f = { [c = counter] in print(c) }
counter = 1
f()

Most of the time you don’t bother creating a new variable name like c. The
shorthand capture list [counter] creates a local variable counter that shadows the
original counter.

counter = 0
f = { [counter] in print(counter) }
counter = 1
f()

The closure f() also prints 0 in this case because counter is a shadowed copy.

When dealing with objects, remember that “constant” has a different meaning for
reference types. With reference types, a capture list will cause the closure to capture
and store the current reference stored inside the captured variable. Changes made to
the object through this reference will still be visible outside of the closure. Ready to
break some reference cycles again? Good! This time, you’ll use — you guessed it — a
capture list.

Unowned self
The closure that determines the tutorial’s description captures a strong reference of
self and creates a reference cycle. Since the closure doesn’t exist after you release
the tutorial object from memory, self will never be nil, so you can change the
strong reference to an unowned one using a capture list.

lazy var description: () -> String = {
 [unowned self] in
 "\(self.title) by \(self.author.name)"
}

Swift Apprentice Chapter 23: Memory Management

raywenderlich.com 436

Huzzah. No more reference cycle! All the deinit methods work as before and output
the following to the console:

Memory management by Cosmin
Goodbye editor Ray!
Goodbye author Cosmin!
Goodbye tutorial Memory management!

Weak self
There are certain times when you can’t capture self as an unowned reference,
because it might become nil. Consider the following example:

let tutorialDescription: () -> String
do {
 let author = Author(name: "Cosmin")
 let tutorial = Tutorial(title: "Memory management",
 author: author)
 tutorialDescription = tutorial.description
}
print(tutorialDescription())

The above code crashes your playground because you deallocate tutorial and
author at the end of do. Change unowned for self to weak in the capture list of
description to fix this:

lazy var description: () -> String = {
 [weak self] in
 "\(self?.title) by \(self?.author.name)"
}

This produces the following curious output:

nil by nil

[weak self] means that the closure will not extend the lifetime of self. If the
underlying object representing self goes away, it gets set to nil. The code doesn’t
crash anymore but does generate a warning which you can fix.

The strong-weak pattern
The strong-weak pattern also does not extend the lifetime of self but converts the
weak reference to a strong one after it enters the closure:

lazy var description: () -> String = {

Swift Apprentice Chapter 23: Memory Management

raywenderlich.com 437

 [weak self] in
 guard let self = self else {
 return "The tutorial is no longer available."
 }
 return "\(self.title) by \(self.author.name)"
}

guard makes self strong if it isn’t nil, so it’s guaranteed to live until the end of the
closure. You print a suitable message if self is nil this time and the previous
warning is gone.

Challenges
Before moving on, here are some challenges to test your knowledge of memory
management. It is best if you try to solve them yourself, but solutions are available if
you get stuck. These came with the download or are available at the printed book’s
source code link listed in the introduction.

Challenge 1: Break the cycle
Break the strong reference cycle in the following code:

class Person {
 let name: String
 let email: String
 var car: Car?

 init(name: String, email: String) {
 self.name = name
 self.email = email
 }

 deinit {
 print("Goodbye \(name)!")
 }
}

class Car {
 let id: Int
 let type: String
 var owner: Person?

 init(id: Int, type: String) {
 self.id = id
 self.type = type
 }

Swift Apprentice Chapter 23: Memory Management

raywenderlich.com 438

 deinit {
 print("Goodbye \(type)!")
 }
}

var owner: Person? = Person(name: "Cosmin",
 email: "cosmin@whatever.com")
var car: Car? = Car(id: 10, type: "BMW")

owner?.car = car
car?.owner = owner

owner = nil
car = nil

Challenge 2: Break another cycle
Break the strong reference cycle in the following code:

class Customer {
 let name: String
 let email: String
 var account: Account?

 init(name: String, email: String) {
 self.name = name
 self.email = email
 }

 deinit {
 print("Goodbye \(name)!")
 }
}

class Account {
 let number: Int
 let type: String
 let customer: Customer

 init(number: Int, type: String, customer: Customer) {
 self.number = number
 self.type = type
 self.customer = customer
 }

 deinit {
 print("Goodbye \(type) account number \(number)!")
 }
}

var customer: Customer? = Customer(name: "George",

Swift Apprentice Chapter 23: Memory Management

raywenderlich.com 439

 email: "george@whatever.com")
var account: Account? = Account(number: 10, type: "PayPal",
 customer: customer!)

customer?.account = account

account = nil
customer = nil

Key points
• Use a weak reference to break a strong reference cycle if a reference may become
nil at some point in its lifecycle.

• Use an unowned reference to break a strong reference cycle when you know a
reference always has a value and will never be nil.

• You must use self inside a closure’s body. This is the way the Swift compiler hints
to you that you need to be careful not to make a circular reference.

• Capture lists define how you capture values and references in closures.

• The strong weak pattern converts a weak reference to a strong one.

Swift Apprentice Chapter 23: Memory Management

raywenderlich.com 440

24Chapter 24: Value Types &
Value Semantics
By Alexis Gallagher

Swift supports two kinds of types: value types and reference types. Structs and
enums are value types, while classes and functions are reference types. These types
differ in their behavior. The behavior you’ve come to expect from value types is the
result of value semantics. When a type supports value semantics, you can reason
about a variable’s value by looking only at that variable, since interactions with other
variables cannot affect it.

The type guarantees the independence of variables, which rules out a large class of
bugs. This is why most Swift standard library types support value semantics, why
many Cocoa types are imported to offer value semantics, and why you should use
value semantics when appropriate. That said, value semantics are not always the
appropriate choice, and they can require some subtle handling to support correctly.

This chapter will define value semantics, show how to test for them, and explain
when they’re suitable. You’ll learn how to build types with value semantics using
value types, reference types, or some mix of the two. You’ll learn how a deft mixed
type can offer the best of both worlds, with the simple interface of value semantics
and the efficiency of reference types under the hood.

raywenderlich.com 441

Value types vs. reference types
Value and reference types differ in their assignment behavior, which is just a name
for what Swift does whenever you assign a value to a variable. Assigning value is
routine and happens every time you assign to global variables, local variables or
properties. You also assign whenever you call a function, effectively assigning a value
to the function’s parameter.

Reference types
Reference types use assign-by-reference. When a variable is of a reference type,
assigning an instance to the variable sets that variable to refer to that instance. If
another variable was already referring to that instance, then both of those variables
post-assignment now refer to the same instance, like so:

Since both variables point to the same instance, you can use one variable to change
that instance and see the effect of the change in the other.

Suppose you’re running a paint shop, selling paint to landscape artists, painters and
builders. You’re building an inventory app to keep track of your paint.

Start out with a simple color and paint abstraction:

struct Color: CustomStringConvertible {
 var red, green, blue: Double

 var description: String {
 "r: \(red) g: \(green) b: \(blue)"
 }

Swift Apprentice Chapter 24: Value Types & Value Semantics

raywenderlich.com 442

}

// Preset colors
extension Color {
 static var black = Color(red: 0, green: 0, blue: 0)
 static var white = Color(red: 1, green: 1, blue: 1)
 static var blue = Color(red: 0, green: 0, blue: 1)
 static var green = Color(red: 0, green: 1, blue: 0)
 // more ...
}

// Paint bucket abstraction
class Bucket {
 var color: Color
 var isRefilled = false

 init(color: Color) {
 self.color = color
 }

 func refill() {
 isRefilled = true
 }
}

Landscape artists like painting the sky, so you have a bucket of blue paint in the shop
with the label “azure” on the side. Housepainters also like that color, but they call it
“wall blue”. On the other side of that same bucket, you have another label that says
“wall blue“.

The code in your inventory app reflects this:

let azurePaint = Bucket(color: .blue)
let wallBluePaint = azurePaint
wallBluePaint.isRefilled // => false, initially
azurePaint.refill()
wallBluePaint.isRefilled // => true, unsurprisingly!

When you call azurePaint.refill(), you also refill wallBluePaint, because the
two variables both refer to the same instance.

In fact, the two variables now depend on each other. The value of any variable is
simply the value of the instance it refers to. These two variables refer to the same
instance, so the value of each variable depends on the value of the other variable.
Changing one might change the other. The two variables are two names for the same
bucket.

Swift Apprentice Chapter 24: Value Types & Value Semantics

raywenderlich.com 443

Value types
Value types, however, use assign-by-copy. Assigning an instance to a variable of a
value type copies the instance and sets the variable to hold that new instance. So
after every assignment, a variable holds an instance which it owns all to itself.

Here’s how this looks:

In the example above, Color is a value type, so assigning a value to wallBlue creates
a copy of the instance held by azure.

Now each variable is independent, so you never need to worry that another variable
might change it. For instance, suppose the painters’ tastes change, and they decide
that walls look better in a darker shade of blue. If you call a method
wallBlue.darken() to change the color of wallBlue there is no effect on what is
meant by azure.

extension Color {
 mutating func darken() {
 red *= 0.9; green *= 0.9; blue *= 0.9
 }
}

var azure = Color.blue
var wallBlue = azure
azure // r: 0.0 g: 0.0 b: 1.0

Swift Apprentice Chapter 24: Value Types & Value Semantics

raywenderlich.com 444

wallBlue.darken()
azure // r: 0.0 g: 0.0 b: 1.0 (unaffected)

To continue the metaphor, instead of having different names for the same bucket of
paint, where the bucket’s contents can change, these value-type variables are more
like names printed on color sample swatches. Each name is independently associated
with just one color, because it is a name for the color itself.

Defining value semantics
What’s nice about about primitive value types like Color or Int is not the assign-by-
copy behavior itself, but rather the guarantee this behavior creates.

This guarantee is that the only way to affect a variable’s value is through that
variable itself. If a type promises that, then the type supports value semantics.

To test if a type supports value semantics, consider it in a snippet like the following:

var x = MysteryType()
var y = x
exposeValue(x) // => initial value derived from x
// {code here which uses only y}
exposeValue(x) // => final value derived from x
// Q: are the initial and final values different?

If code that “uses only y” can affect the value of x, then MysteryType does not
support value semantics.

One benefit of value semantics is that they aid local reasoning, since to find out
how a variable got its value you only need to consider the history of interactions with
that variable. The world of value semantics, is a simple one, where variables have
values and those variables do not affect each other.

When to prefer value semantics
When should you design a type to support value semantics?While they are
convenient, whether value semantics are appropriate depends on what the type is
supposed to model.

Value semantics are good for representing inert, descriptive data — numbers, strings,
and physical quantities like angle, length, or color; mathematical objects, like vectors
and matrices; pure binary data; and lastly, collections of such values, and large rich
structures made from such values, like media.

Swift Apprentice Chapter 24: Value Types & Value Semantics

raywenderlich.com 445

Reference semantics are good for representing distinct items in your program or in
the world. For example: constructs within your program such as specific buttons or
memory buffers; an object that plays a specific role in coordinating certain other
objects; or a particular person or physical object in the real world.

The underlying logic here is that the referenceable items are all objects, meaning
they all have a distinct identity. Two people could be alike in all physical attributes,
but they are still distinct people. Two buffers could hold equal byte patterns, but they
are still distinct buffers.

But the items on the value semantics list are all values. They lack identity, so it is
meaningless to talk about two things being equal but distinct. If we agree x equals
five, there is no further question about which five it equals. Five is five.

A common pattern is to see a model type like Person defined as a reference type to
reflect that it is an object with identity, while it is loaded with various value
properties like age, hairColor, and so on, that describe the object.

When a program must represent many distinct items (like Persons), or when
different parts of a program need to coordinate around the same item (like the
device’s screen or the UIApplication instance itself), reference types are the natural
tool for representing those items.

Reference types are used throughout UIKit because one of the main things running
application code needs to refer to is other pieces of code. So you have UIView which
describes a view on screen, UIScreen for the screen, NSNotificationCenter for
objects providing framework services, and so on.

Implementing value semantics
Now assume you do want value semantics. If you’re defining a type, how do you
enforce it? The approach depends on the details of the type. In this section, you will
consider the various cases one by one.

Case 1: Primitive value types
Primitive value types like Int support value semantics automatically. This is because
assign-by-copy ensures each variable holds its own instance — so no other variable
can affect the instance — and because the instance itself is structurally independent.
That is, the instance defines its own value independently of any other instance, so no
other instance could affect its value.

Swift Apprentice Chapter 24: Value Types & Value Semantics

raywenderlich.com 446

The intuition here is that an Int is directly represented by a pattern of bits that are
copied whole with no reference to anything external.

Case 2: Composite value types
Composite value types, for example struct or enum, follow a simple rule: A struct
supports value semantics if all its stored properties support value semantics.

You can prove this rule by looking at how Swift does the instance copying. When
Swift copies the instance of a struct, it creates a copy instance as if it’s directly
assigning all the stored properties of the original instance into the properties of the
copy instance. This is a direct assignment in that it does not invoke any property
observers.

Since you are assigning a struct, which is a value type, the assigned-to variable will
hold a copy of the assigned instance. And since the instance’s properties have value
semantics, the copy instance’s properties will be the only variables that can modify
their instances. So from this you can see the assigned-to variable is the only way to
modify its instance, or any other instance it depends on, and therefore is the only
way to modify its own value. Proof!

If the type is an enumeration, it’s analogous: the instance copy is defined to have the
same enumeration member, and it is as if that member’s associated values are
directly assigned from the associated values of the existing instance.

Incidentally, since an Array<Element> provides the same semantics as a struct
with a property of type Element, this case also tells you whether arrays support value
semantics. They do, but only if their element type does.

Case 3: Reference types
Reference types can also have value semantics.

To see how, recall that a type has value semantics if the only way to affect a
variable’s value is through that variable. In general, you can change the value of a
variable of a reference type in only two ways, either by assigning to the variable so it
refers to a different instance or modifying the instance itself.

The first way works through the variable, so it is allowed by value semantics. But the
second way — modifying the instance — could be affected through another variable,
so you need to prevent it to preserve value semantics.

Swift Apprentice Chapter 24: Value Types & Value Semantics

raywenderlich.com 447

The solution is straightforward: To define a reference type with value semantics, you
must define it to be immutable. In other words, build it so it’s impossible to change
the instance’s value after initialization. To achieve this, you must ensure that all its
stored properties are constant and only use types with value semantics.

Many of the basic UIKit utility types adopt this pattern. For instance, consider this
code handling a UIImage:

var a = UIImage(named:"smile.jpg")
var b = a
computeValue(b) // => something
doSomething(a)
computeValue(b) // => same thing!

Because UIImage is immutable, there is no possible function doSomething(a) that
will cause computeValue(b) to change the value it returns. One could ask if b refers
to a copy of, or a reference to the instance of a, but it doesn’t matter.

The UIImage type has dozens of properties (scale, capInsets, renderingMode,
etc.), but since they are all read-only you can’t modify an instance. Therefore, there’s
no way for one variable to affect another. But if one of its properties were not
constant, then setting that property would mutate the instance and spoil the
invariant — such structural sharing of a common instance would not be safe.

UIImage, along with many of the Cocoa types, are defined as immutable for this
reason, because an immutable reference type has value semantics.

Case 4: value types containing mutable
reference types
The final case is mixed types: value types that contain mutable reference types. This
is the subtlest case but perhaps the most valuable. It allows combining the simple
programming model of value types with the efficiency benefits of reference types.

To see why this fails, look again at the instance copying rule:

1. When a mixed-type instance is copied, all of its properties are directly assigned.

2. But since any reference-type property is assigned by reference to the copy, the
instances of the copy property and the original property will refer to the same
shared instance.

The instance and its copy are distinct from each, but their values depend on each
other because of this structural sharing of a property that affects both their values.

Swift Apprentice Chapter 24: Value Types & Value Semantics

raywenderlich.com 448

An example and a diagram will explain this best. Returning to your paint shop,
imagine you want a type to define a plan for a painting project, a plan that specifies
the bucket that provides the main color and also specifies the accent color:

struct PaintingPlan { // a value type, containing ...
 // a value type
 var accent = Color.white
 // a mutable reference type
 var bucket = Bucket(color: .blue)
}

You might want to define your plan for a piece of artwork by starting with a plan for
housepainting, and then modify it. Since PaintingPlan is a struct — a value type —
you might hope to do this by assigning a new variable and then modifying that
variable.

Unfortunately, since it’s a struct that contains a reference type, the assignment
does not create a truly independent copy.

When you change the color in the house plan you change the color in the art plan,
since they share the same bucket.

let artPlan = PaintingPlan()
let housePlan = artPlan
artPlan.bucket.color // => blue
// for house-painting only we fill the bucket with green paint
housePlan.bucket.color = Color.green
artPlan.bucket.color // => green. oops!

This is due to implicit structural sharing of the paint bucket instance:

Swift Apprentice Chapter 24: Value Types & Value Semantics

raywenderlich.com 449

Because of this structural sharing, PaintingPlan is a value type but lacks value
semantics.

Copy-on-write to the rescue

What’s the fix? The first step lies in recognizing that value semantics are defined
relative to an access level. Value semantics depend on what changes you can make
and see with a variable, which depends on the access level of the setters and
mutating functions of the variable’s type. So a type may provide value semantics to
all client code — for example, which can access internal or public members —
while not providing value semantics to code that can access its private members.

So the trick to preserving value semantics in a mixed type is to define the type such
that its users are never able to see the effects of mutation on the contained
reference-type property. This example makes the mutable reference type private
and provides an interface that controls reads and writes:

struct PaintingPlan { // a value type, containing ...
 // a value type
 var accent = Color.white
 // a private reference type, for "deep storage"
 private var bucket = Bucket()

 // a pseudo-value type, using the deep storage
 var bucketColor: Color {
 get {
 bucket.color
 }
 set {
 bucket = Bucket(color: newValue)
 }
 }
}

To code that can access private members, this struct contains the mutable reference-
type property bucket, spoiling value semantics. But to a client with internal access
or higher, the type behaves just like a struct that has value semantics, with two
properties accentColor and bucketColor.

Reading bucketColor simply invokes the computed property getter which reads
from the private reference-type property bucket, which acts as the backing storage.
Apple sometimes also calls this indirect storage, or deep storage. Assigning to
bucketColor invokes the computed property setter, which is designed to preserve
the independence of PaintingPlan values. Whenever a user modifies bucketColor,
the setter creates a distinct new instance of indirect storage, a new Bucket, to back
it.

Swift Apprentice Chapter 24: Value Types & Value Semantics

raywenderlich.com 450

The effect is that assigning a value of PaintingPlan does not immediately copy the
backing storage at the moment of assignment, as with a simple value type. Instances
will share their backing storage for a while. But every instance appears as if it always
had its own backing store, since it privately creates its own unique backing store as
soon as one is needed.

This pattern is called copy-on-write (COW), because the system only copies the
backing store at the moment when you try to write to the variable.

But what’s the point of that? The point is performance. Suppose the backing store is
very large. When you only read from variables, the instances can all share the same
backing store, using less storage and sparing the computational cost of copying it.

But once you use a variable to mutate an instance — to write to it — only then does
the system do the work of copying the backing store, to ensure the modification does
not affect other variables. This minimizes immediate storage and compute costs,
deferring them only until they are needed.

If the backing store is large enough to deserve this optimization, then it is almost
certainly worth applying a further optimization, and performing an in-place
mutation of the backing store if it is not shared elsewhere. This is cheaper than
creating a new store and throwing away the old one.

For this to work, your value type needs a way to tell if it uniquely refers to a given
backing store. The standard library function isKnownUniquelyReferenced provides
just the thing for that:

struct PaintingPlan { // a value type, containing ...
 // ... as above ...

 // a computed property facade over deep storage
 // with copy-on-write and in-place mutation when possible
 var bucketColor: Color {
 get {
 bucket.color
 }
 set {
 if isKnownUniquelyReferenced(&bucket) {
 bucket.color = bucketColor
 } else {
 bucket = Bucket(color: newValue)
 }
 }
 }
}

The Swift standard library uses this technique extensively.

Swift Apprentice Chapter 24: Value Types & Value Semantics

raywenderlich.com 451

In fact, many of the Swift value types are not primitive value types, but are mixed
types that only seem like primitive value types because they provide value semantics,
relying on efficient COW implementations to do so. The Swift language itself relies
on COW, sometimes deferring the copying of instances until the compiler can deduce
that it is needed by a mutation.

Sidebar: property wrappers

As you can see above, the copy-on-write pattern is verbose. You need to define the
private, stored reference-type property for the backing storage (the bucket), the
computed property that preserves value semantics (the bucketColor), and the tricky
copy-on-write logic itself in the getter and setter. If PaintingPlan contains dozens
of such properties, this would get repetitive.

You can simplify this using property wrappers, which let you generalize many kinds of
property implementation patterns. The copy-on-write pattern makes a good
example. With a CopyOnWriteColor property wrapper, you can replace the above
code with this simpler code:

struct PaintingPlan {

 var accent = Color.white
 @CopyOnWriteColor var bucketColor = .blue
}

This allows easily creating dozens of copy-on-write properties. How does it work?

The line @CopyOnWriteColor var bucketColor = .blue is automatically
expanded by the compiler into the following:

private var _bucketColor = CopyOnWriteColor(wrappedValue: .blue)

var bucketColor: Color {
 get { _bucketColor.wrappedValue }
 set { _bucketColor.wrappedValue = newValue }
}

You can see how this reproduces parts of our original version. There’s the internal
computed property (bucketColor) and the private storage property (_bucketColor).
But where does all the tricky logic go? It lives in a dedicated custom property wrapper
type, CopyOnWriteColor. This is what defines the custom @CopyOnWriteColor
attribute. This is the type of _bucketColor, and it owns the actual backing storage
and implements the logic

Swift Apprentice Chapter 24: Value Types & Value Semantics

raywenderlich.com 452

Here is its definition:

@propertyWrapper
struct CopyOnWriteColor {

 init(wrappedValue: Color) {
 self.bucket = Bucket(color: wrappedValue)
 }

 private var bucket: Bucket

 var wrappedValue: Color {
 get {
 bucket.color
 }
 set {
 if isKnownUniquelyReferenced(&bucket) {
 bucket.color = newValue
 } else {
 bucket = Bucket(color:newValue)
 }
 }
 }
}

When in PaintingPlan you assign an initial value of .blue to bucketColor, that
actually initializes the property wrapper CopyOnWriteColor, which defines the true
backing storage in bucket. And when you access bucketColor in PaintingPlan, you
call getters and setters which access the property wrapper’s computed property
wrappedValue. And accessing that, in turn, calls the computed properties which you
defined in CopyOnWriteColor, and which implement the same copy-on-write logic
as our original implementation.

It’s a bit opaque at first because of the two levels of delegation through computed
properties, but fundamentally this is plain old code reuse. The benefit is you write
the tricky copy-on-write logic just once, and refer to it whenever you use the custom
attribute, so you could write a complex painting plan more easily:

struct PaintingPlan {

 var accent = Color.white

 @CopyOnWriteColor var bucketColor = .blue
 @CopyOnWriteColor var bucketColorForDoor = .blue
 @CopyOnWriteColor var bucketColorForWalls = .blue
 // ...
}

Swift Apprentice Chapter 24: Value Types & Value Semantics

raywenderlich.com 453

Property wrappers can be generic, making them even more reusable, as you’ll explore
in a challenge shortly.

Recipes for value semantics
To summarize, here is the recipe for determining if a type has value semantics or
how to define your own such type:For a reference type (a class):

• The type must be immutable, so the requirement is that all its properties are
constant and must be of types that have value semantics.

For a value type (a struct or enum):

• A primitive value type like Int always has value semantics.

• If you define a struct type with properties, that type will have value semantics if
all of its properties have value semantics.

• Similarly, if you define an enum type with associated values, that type will have
value semantics if all its associated values have value semantics.

For COW value types —struct or enum:

1. Choose the “value-semantics access level”, that is, the access level that’ll expose
an interface that preserves value semantics.

2. Make note of all mutable reference-type properties, as these are the ones that
spoil automatic value semantics. Set their access level below the value-semantics
level.

3. Define all the setters and mutating functions at and above the value-semantics
access level so that they never actually modify a shared instance of those
reference-type properties, but instead assign a copy of the instance to the
reference-type property.

Challenges
Before moving on, here are some challenges to test your knowledge of value types
and reference types. It is best if you try to solve them yourself, but solutions are
available if you get stuck. These came with the download or are available at the
printed book’s source code link listed in the introduction.

Swift Apprentice Chapter 24: Value Types & Value Semantics

raywenderlich.com 454

Challenge 1: Image with value semantics
Build a new type, Image, that represents a simple image. It should also provide
mutating functions that apply modifications to the image. Use copy-on-write to
economize use of memory in the case where a user defines a large array of these
identical images and doesn’t mutate any of them.

To get started, assume you’re using the following Pixels class for the raw storage:

private class Pixels {
 let storageBuffer: UnsafeMutableBufferPointer<UInt8>

 init(size: Int, value: UInt8) {
 let p = UnsafeMutablePointer<UInt8>.allocate(capacity: size)
 storageBuffer = UnsafeMutableBufferPointer<UInt8>(start: p,
count: size)
 storageBuffer.initialize(from: repeatElement(value, count:
size))
 }

 init(pixels: Pixels) {
 let otherStorage = pixels.storageBuffer
 let p = UnsafeMutablePointer<UInt8>.allocate(capacity:
otherStorage.count)
 storageBuffer = UnsafeMutableBufferPointer<UInt8>(start: p,
count: otherStorage.count)
 storageBuffer.initialize(from: otherStorage)
 }

 subscript(offset: Int) -> UInt8 {
 get {
 storageBuffer[offset]
 }
 set {
 storageBuffer[offset] = newValue
 }
 }

 deinit {
 storageBuffer.baseAddress!.deallocate(capacity:
self.storageBuffer.count)
 }
}

Your image should be able to set and get individual pixel values and set all values at
once. Typical usage:

var image1 = Image(width: 4, height: 4, value: 0)

// test setting and getting

Swift Apprentice Chapter 24: Value Types & Value Semantics

raywenderlich.com 455

image1[0,0] // -> 0
image1[0,0] = 100
image1[0,0] // -> 100
image1[1,1] // -> 0

// copy
var image2 = image1
image2[0,0] // -> 100
image1[0,0] = 2
image1[0,0] // -> 2
image2[0,0] // -> 100 because of copy-on-write

var image3 = image2
image3.clear(with: 255)
image3[0,0] // -> 255
image2[0,0] // -> 100 thanks again, copy-on-write

Challenge 2: Enhancing UIImage
Pretend you’re Apple and want to modify UIImage to replace it with a value type that
has the mutating functions described above. Could you do make it backward
compatible with code that uses the existing UIImage API?

Challenge 3: Generic property wrapper for
CopyOnWrite
Consider the property wrapper CopyOnWriteColor you defined in this chapter. It lets
you wrap any variable of type Color and it manages the sharing of an underlying
storage type, Bucket, which own a single Color instance. Thanks to structural
sharing, multiple CopyOnWriteColor instances might share the same Bucket
instance, thus sharing its Color instance, thus saving memory.

That property wrapper was only good for Color properties stored in a Bucket type.
But the basic idea is more general, and depends on two key facts. First, that the
wrapped value type, Color, already has value semantics — this fact is what ensured
that assigning Color values into Buckets did not produce unintended sharing at the
level of Color type itself. Second, that Bucket itself has reference semantics — this
fact is what allows us to use it as the instance which may be structurally shared
across instances of whatever type contains the wrapped property, e.g.,
PaintingPlans. That is, for the purposes of implementing the copy-on-write logic,
what matters about Bucket is not its domain semantics (like isRefilled) but just
that it is a reference type. You only used it as a box for the Color value.

Swift Apprentice Chapter 24: Value Types & Value Semantics

raywenderlich.com 456

Since property wrappers can be generic, you can define a generic copy-on-write
property property wrapper type, CopyOnWrite. Instead of being able to wrap only
Color values, it should be generic over any value semantic that it wraps. And so
instead of using a dedicated storage type like Bucket, it should provide its own box
type to act as storage. Your challenge: write the definition for this generic type,
CopyOnWrite, and use it in an example to verify that the wrapped properties
preserve the value semantics of the original type. To get you started, here is a
suitable definition of a box type:

private class StorageBox<StoredValue> {
 var value: StoredValue

 init(_ value: StoredValue) {
 self.value = value
 }
}

Challenge 4: Implement @ValueSemantic
Using the following protocol DeepCopyable as a constraint, write the definition for
this generic property wrapper type, @ValueSemantic, and use it in an example to
verify that the wrapped properties have value semantics, even when they are
wrapping an underlying type which does not. Use NSMutableString is an example of
a non-value semantic type.

protocol DeepCopyable {
 /* Returns a _deep copy_ of the current instance.

 If `x` is a deep copy of `y`, then:
 - the instance `x` should have the same value as `y` (for
some sensible definition of value -- _not_ just memory location
or pointer equality!)
 - it should be impossible to do any operation on `x` that
will modify the value of the instance `y`.

 If the conforming type is a reference type (or otherwise does
not have value semantics), then the way to achieve a deep copy
is by ensuring that `x` and `y` do not share any storage, do not
contain any properties that share any storage, and so on..

 If the conforming type already has value semantics then it
already meets these requirements, and it suffices to return
`self`. But in this case, there's no point to using the
`@ValueSemantic` property wrapper. */

 func deepCopy() -> Self
}

Swift Apprentice Chapter 24: Value Types & Value Semantics

raywenderlich.com 457

Challenge 5: Determining if a type has value
semantics
Consider the test snippet used to determine if a type has value semantics. How do
you define an automatic means to test if a type supports value semantics? If I handed
you a type, could you know for sure if it offers value semantics? What if you could not
see its implementation? Could the compiler be expected to know?

Key points
• Value types and reference types differ in their assignment behavior. Value types use

assign-by-copy; reference types use assign-by-reference. This behavior describes
whether a variable copies or refers to the instance assigned to it.

• This assignment behavior affects not only variables but also function calls.

• Value types help you implement types with value semantics. A type has value
semantics if assigning to a variable seems to create a completely independent
instance. When this is the case, the only way to affect a variable’s value is through
the variable itself, and you can simply think about variables as if instances and
references did not exist.

• Primitive value types and immutable reference types have value semantics
automatically. Value types that contain reference types, such as mixed types, will
only have value semantics if they are engineered that way. For instance, they
might only share immutable properties, or privately copy shared components
when they would be mutated.

• Structural sharing is when distinct instances refer to a common backing instance
that contributes to their value. This economizes storage since multiple instances
can depend on one large shared instance. But if one instance can modify the
shared backing instance, it can indirectly modify the value of other instances, so
that the distinct instances are not fully independent, undermining value
semantics.

• Copy-on-write is the optimization pattern where a type relies on structural
sharing but also preserves value semantics by copying its backing instance only at
the moment when it itself is mutated. This allows the efficiency of a reference type
in the read-only case, while deferring the cost of instance copying in the read-
write case.

Swift Apprentice Chapter 24: Value Types & Value Semantics

raywenderlich.com 458

• Reference types also have value semantics if you define them to be fully immutable,
meaning that they cannot be modified after initialization. To do this it suffices that
all their stored properties are read-only and of types that themselves have value
semantics.

Where to go from here?
The best place to explore advanced implementations of value semantic types is in
the Swift standard library, which relies on these optimizations extensively.

Apple, and many practitioners in the wider community, have written about value
types and value-oriented programming more generally. Here are some relevant
videos available online:

• WWDC 2016 session 207: What’s New in Foundation for Swift https://
developer.apple.com/videos/play/wwdc2016/207/. Apple.

• WWDC 2015 session 414: Building Better Apps with Value Types https://
developer.apple.com/videos/play/wwdc2015/414/. Apple.

• Controlling Complexity in Swift http://bit.ly/control-complexity. Andy Matuschak.

• Value of Values https://www.infoq.com/presentations/Value-Values. Rich Hickey.

• Value Semantics versus Value Types http://bit.ly/swift-value-semantics-not-types.
Your humble author.

These talks offer a perspective that is complementary to the one in this chapter.
However, only the last focuses on the distinctions between value types, as defined by
assignment behavior, and value semantics, as defined by independence of variable
values.

An old classic on persistent data structures, also known as purely functional data
structures, is Purely Functional Data Structures by Chris Okasaki. Purely functional
structures make extensive use of structural sharing and offer two key benefits:
economize on storage for read-only copies; represent all the variations of a value
produced over its mutational history.

More recently, the Clojure language has made extensive use of hash array mapped
tries. It would be interesting to consider how to implement them in Swift.

Swift Apprentice Chapter 24: Value Types & Value Semantics

raywenderlich.com 459

25Chapter 25: Protocol-
Oriented Programming
By Ehab Amer

Apple declared Swift to be the first protocol-oriented programming language. This
declaration was made possible by the introduction of protocol extensions.

Although protocols have been in Swift since the very beginning, this announcement,
and the protocol-heavy standard library changes Apple made, affects the way you
think about your types. Extending protocols is the key to an entirely new style of
programming!

In brief, protocol-oriented programming emphasizes coding to protocols, instead
of to specific classes, structs or enums. It does this by breaking the old rules of
protocols and allowing you to write implementations for protocols on the protocols
themselves.

This chapter introduces you to the power of protocol extensions and protocol-
oriented programming. Along the way, you’ll learn how to use default
implementations, type constraints, mixins and traits to vastly simplify your code.

raywenderlich.com 460

Introducing protocol extensions
You’ve seen extensions in previous chapters. They let you add additional methods
and computed properties to a type:

extension String {
 func shout() {
 print(uppercased())
 }
}

"Swift is pretty cool".shout()

Here, you’re extending the String type itself to add a new method. You can extend
any type, including ones that you didn’t write yourself. You can have any number of
extensions on a type.

You can define a protocol extension using the following syntax:

protocol TeamRecord {
 var wins: Int { get }
 var losses: Int { get }
 var winningPercentage: Double { get }
}

extension TeamRecord {
 var gamesPlayed: Int {
 wins + losses
 }
}

Similar to the way you extend a class, struct or enum, you use the keyword
extension followed by the name of the protocol you are extending. Within the
extension’s braces, you can define additional members on the protocol.

The biggest difference in the definition of a protocol extension, compared to the
protocol itself, is that the extension includes the actual implementation of the
member. In the example above, you define a new computed property named
gamesPlayed that combines wins and losses to return the total number of games
played.

Although you haven’t written code for a concrete type that’s adopting the protocol,
you can use the members of the protocol within its extension. That’s because the
compiler knows that any type conforming to TeamRecord will have all the members
required by TeamRecord.

Swift Apprentice Chapter 25: Protocol-Oriented Programming

raywenderlich.com 461

Now you can write a simple type that adopts TeamRecord, and use gamesPlayed
without the need to reimplement it.

struct BaseballRecord: TeamRecord {
 var wins: Int
 var losses: Int

 var winningPercentage: Double {
 Double(wins) / Double(wins + losses)
 }
}

let sanFranciscoSwifts = BaseballRecord(wins: 10, losses: 5)
sanFranciscoSwifts.gamesPlayed // 15

Since BaseballRecord conforms to TeamRecord, you have access to gamesPlayed,
which was defined in the protocol extension.

You can see how useful protocol extensions can be to define “free” behavior on a
protocol — but this is only the beginning. Next, you’ll learn how protocol extensions
can provide implementations for members of the protocol itself.

Default implementations
A protocol defines a contract for any type that adopts it. If a protocol defines a
method or a property, any type that adopts the protocol must implement that
method or property. Consider another example of a TeamRecord type:

struct BasketballRecord: TeamRecord {
 var wins: Int
 var losses: Int
 let seasonLength = 82

 var winningPercentage: Double {
 Double(wins) / Double(wins + losses)
 }
}

Both BasketballRecord and BaseballRecord have identical implementations of
winningPercentage. You can imagine that most of the TeamRecord types will
implement this property the same way. That could lead to a lot of repetitive code.

Fortunately, Swift has a shortcut:

extension TeamRecord {
 var winningPercentage: Double {

Swift Apprentice Chapter 25: Protocol-Oriented Programming

raywenderlich.com 462

 Double(wins) / Double(wins + losses)
 }
}

While this is much like the protocol extension you defined in the previous example,
it differs in that winningPercentage is a member of the TeamRecord protocol itself
whereas gamesPlayed isn’t. Implementing a member of a protocol in an extension
creates a default implementation for that member.

You’ve already seen default arguments to functions, and this is similar: If you don’t
implement winningPercentage in your type, it will use the default implementation
provided by the protocol extension.

In other words, you no longer need to explicitly implement winningPercentage on
types that adopt TeamRecord:

struct BasketballRecord: TeamRecord {
 var wins: Int
 var losses: Int
 let seasonLength = 82
}

let minneapolisFunctors = BasketballRecord(wins: 60, losses: 22)
minneapolisFunctors.winningPercentage

Default implementations let you add a capability to a protocol while greatly reducing
repeated or “boilerplate” code.

A default implementation doesn’t prevent a type from implementing a protocol
member on its own. Some team records may require a slightly different formula for
the winning percentage, such as a sport that includes ties as a possible outcome:

struct HockeyRecord: TeamRecord {
 var wins: Int
 var losses: Int
 var ties: Int

 // Hockey record introduces ties, and has
 // its own implementation of winningPercentage
 var winningPercentage: Double {
 Double(wins) / Double(wins + losses + ties)
 }
}

Now, if you call winningPercentage on a TeamRecord that’s a HockeyRecord value
type, it will calculate the winning percentage as a function of wins, losses and ties.

Swift Apprentice Chapter 25: Protocol-Oriented Programming

raywenderlich.com 463

If you call winningPercentage on another type that doesn’t have its own
implementation, it will fall back to the default implementation:

let chicagoOptionals = BasketballRecord(wins: 10, losses: 6)
let phoenixStridables = HockeyRecord(wins: 8, losses: 7, ties:
1)

chicagoOptionals.winningPercentage // 10 / (10 + 6) == 0.625
phoenixStridables.winningPercentage // 8 / (8 + 7 + 1) == 0.5

Mini-exercise
Write a default implementation on CustomStringConvertible that will simply
remind you to implement description by returning Remember to implement
CustomStringConvertible!.

Once you have your default implementation, you can write code like this:

struct MyStruct: CustomStringConvertible {}
print(MyStruct())
// should print "Remember to implement CustomStringConvertible!"

Understanding protocol extension
dispatch
There’s an important gotcha to keep in mind when defining protocol extensions. If a
type defines a method or property in protocol extension, without declaring it in the
protocol itself, static dispatch comes into play. This means the implementation of
the property of the method used depends on the type of the variable or constant —
not the dynamic type of the instance.

Suppose you defined a protocol similar to TeamRecord called WinLoss:

protocol WinLoss {
 var wins: Int { get }
 var losses: Int { get }
}

...and declared the following extension:

extension WinLoss {
 var winningPercentage: Double {
 Double(wins) / Double(wins + losses)

Swift Apprentice Chapter 25: Protocol-Oriented Programming

raywenderlich.com 464

 }
}

...which is adopted by the following type:

struct CricketRecord: WinLoss {
 var wins: Int
 var losses: Int
 var draws: Int

 var winningPercentage: Double {
 Double(wins) / Double(wins + losses + draws)
 }
}

Observe what happens when you use the winningPercentage property:

let miamiTuples = CricketRecord(wins: 8, losses: 7, draws: 1)
let winLoss: WinLoss = miamiTuples

miamiTuples.winningPercentage // 0.5
winLoss.winningPercentage // 0.53 !!!

Even though miamiTuples and winLoss contain the same instance, you see different
results. This is because static dispatch chooses an implementation based on the type
of the constants: CricketRecord for miamiTuples and WinLoss for winLoss.

If winningPercentage were defined in the WinLoss protocol, the extension wouldn’t
add a new member. It would simply provide a default implementation for a member
already declared in the protocol. In this more common case, dynamic dispatch is
used, and the choice of implementation depends on the actual type of the instance,
not the type of the constant or variable.

You’ve seen dynamic dispatch in action in Chapter 14, “Advanced Classes”, as the
dispatch method used for overridden properties and methods in class hierarchies.

Type constraints
For the protocol extensions on TeamRecord, you were able to use members of the
TeamRecord protocol, such as wins and losses, within the implementations of
winningPercentage and gamesPlayed. Much like in an extension on a struct, class
or enum, you write code as if you were writing inside of the type you’re extending.

When you write extensions on protocols, there’s an additional dimension to
consider: The adopting type could also be any number of other types. In other words,

Swift Apprentice Chapter 25: Protocol-Oriented Programming

raywenderlich.com 465

when a type adopts TeamRecord, it could very well also adopt Comparable,
CustomStringConvertible, or even another protocol you wrote yourself!

Swift lets you write extensions used only when the type adopting a protocol is also
another type that you specify. By using a type constraint on a protocol extension,
you’re able to use methods and properties from another type inside the
implementation of your extension.

Take the following example of a type constraint:

protocol PostSeasonEligible {
 var minimumWinsForPlayoffs: Int { get }
}

extension TeamRecord where Self: PostSeasonEligible {
 var isPlayoffEligible: Bool {
 wins > minimumWinsForPlayoffs
 }
}

You have a new protocol, PostSeasonEligible, that defines a
minimumWinsForPlayoffs property. The magic happens in the extension of
TeamRecord, which has a type constraint on Self: PostSeasonEligible that will
apply the extension to all adopters of TeamRecord that also adopt
PostSeasonEligible.

Applying the type constraint to the TeamRecord extension means that within the
extension, self is known to be both a TeamRecord and PostSeasonEligible. That
means you can use properties and methods defined on both of those types. You can
also use type constraints to create default implementations on specific type
combinations. Consider the case of HockeyRecord, which introduced ties in its
record along with another implementation of winningPercentage:

struct HockeyRecord: TeamRecord {
 var wins: Int
 var losses: Int
 var ties: Int

 var winningPercentage: Double {
 Double(wins) / Double(wins + losses + ties)
 }
}

Swift Apprentice Chapter 25: Protocol-Oriented Programming

raywenderlich.com 466

Ties are allowed in more games than hockey, so you could make that a protocol,
instead of coupling it to one specific sport:

protocol Tieable {
 var ties: Int { get }
}

With type constraints, you can also make a default implementation for
winningPercentage, specifically for types that are both a TeamRecord and Tieable:

extension TeamRecord where Self: Tieable {
 var winningPercentage: Double {
 Double(wins) / Double(wins + losses + ties)
 }
}

Now any type that is both a TeamRecord and Tieable won’t need to explicitly
implement a winningPercentage that factors in ties:

struct RugbyRecord: TeamRecord, Tieable {
 var wins: Int
 var losses: Int
 var ties: Int
}

let rugbyRecord = RugyRecord(wins: 8, losses: 7, ties: 1)
rugbyRecord.winningPercentage // 0.5

You can see that with a combination of protocol extensions and constrained protocol
extensions, you can provide default implementations that make sense for very
specific cases.

Mini-exercise
Write a default implementation on CustomStringConvertible that will print the
win/loss record in the format Wins - Losses for any TeamRecord type. For instance,
if a team is 10 and 5, it should return 10 - 5.

Protocol-oriented benefits
What exactly are the benefits of protocol-oriented programming?

Swift Apprentice Chapter 25: Protocol-Oriented Programming

raywenderlich.com 467

Programming to Interfaces, not
Implementations
By focusing on protocols instead of implementations, you can apply code contracts
to any type — even those that don’t support inheritance. Suppose you were to
implement TeamRecord as a base class.

class TeamRecordBase {
 var wins = 0
 var losses = 0

 var winningPercentage: Double {
 Double(wins) / Double(wins + losses)
 }
}

// Will not compile: inheritance is only possible with classes.
struct BaseballRecord: TeamRecordBase {

}

At this point, you’d be stuck working with classes as long as you were working with
team records. If you wanted to add ties to the mix, you’d either have to add ties to
your subclass:

class HockeyRecord: TeamRecordBase {
 var ties = 0

 override var winningPercentage: Double {
 Double(wins) / Double(wins + losses + ties)
 }
}

Or you’d have to create yet another base class and thus deepen your class hierarchy:

class TieableRecordBase: TeamRecordBase {
 var ties = 0

 override var winningPercentage: Double {
 Double(wins) / Double(wins + losses + ties)
 }
}

class HockeyRecord: TieableRecordBase {
}

class CricketRecord: TieableRecordBase {
}

Swift Apprentice Chapter 25: Protocol-Oriented Programming

raywenderlich.com 468

Likewise, if you wanted to work with any records that have wins, losses and ties, then
you’d generally code against the lowest-common denominator base class:

extension TieableRecordBase {
 var totalPoints: Int {
 (2 * wins) + (1 * ties)
 }
}

This forces you to “code to implementation, not interface.” If you wanted to compare
the records of two teams, all you care about is that there are wins and losses. With
classes though, you’d need to operate on the specific base class that happens to
define wins and losses.

I’m sure you don’t want to hear what would happen if you suddenly needed to
support divisional wins and losses on some sports! :]

With protocols, you don’t need to worry about the specific type or even whether the
thing is a class or a struct; all you care about is the existence of certain common
properties and methods.

Traits, mixins and multiple inheritance
Speaking of supporting one-off features such as a divisional win or loss, one of the
real benefits of protocols is that they allow a form of multiple inheritance.

When creating a type, you can use protocols to decorate it with all the unique
characteristics you want:

protocol TieableRecord {
 var ties: Int { get }
}

protocol DivisionalRecord {
 var divisionalWins: Int { get }
 var divisionalLosses: Int { get }
}

protocol ScoreableRecord {
 var totalPoints: Int { get }
}

extension ScoreableRecord where Self: TieableRecord, Self:
TeamRecord {
 var totalPoints: Int {
 (2 * wins) + (1 * ties)
 }

Swift Apprentice Chapter 25: Protocol-Oriented Programming

raywenderlich.com 469

}

struct NewHockeyRecord: TeamRecord, TieableRecord,
 DivisionalRecord, CustomStringConvertible, Equatable {
 var wins: Int
 var losses: Int
 var ties: Int
 var divisionalWins: Int
 var divisionalLosses: Int

 var description: String {
 "\(wins) - \(losses) - \(ties)"
 }
}

NewHockeyRecord is a TeamRecord and a TieableRecord, tracks divisional wins and
losses, works with == and defines its own CustomStringConvertible description!

Using protocols in this way is described as using traits or mixins. These terms reflect
that you can use protocols and protocol extensions to add, or mix in, additional
behaviors, or traits, to a type.

Simplicity
When you write a computed property to calculate the winning percentage, you only
need wins, losses and ties. When you write code to print the full name of a person,
you only need a first and a last name.

If you were to write code to do these tasks inside of a more complex object, it could
be easy to make the mistake of coupling it with unrelated code:

var winningPercentage: Double {
 var percent = Double(wins) / Double(wins + losses)

 // Oh no! Not relevant!
 above500 = percent > 0.5

 return percent
}

That above500 property might be needed for some reason in cricket, but not in
hockey. However, that makes the function very specific to a particular sport.

You saw how simple the protocol extension version of this function was: It handled
one calculation and that was it. Having simple default implementations that can be
used throughout your types keeps the common code in one place.

Swift Apprentice Chapter 25: Protocol-Oriented Programming

raywenderlich.com 470

You don’t need to know that the type adopting a protocol is a HockeyRecord, or a
StudentAthlete, or a class, struct or enum. Because the code inside your protocol
extension operates only on the protocol itself, any type that conforms to that
protocol will also conform to your code.

As you’ll discover again and again in your coding life that simpler code is less buggy
code. :]

Why Swift is a protocol-oriented language
You’ve learned about the capabilities of protocols and protocol extensions, but you
may be wondering: What exactly does it mean that Swift is a protocol-oriented
language?

Protocol extensions greatly affect your ability to write expressive and decoupled code
— and many of the design patterns that protocol extensions enable are reflected in
the Swift language itself.

To begin, you can contrast protocol-oriented programming with object-oriented
programming. The latter is focused on the idea of objects and how they interact.
Because of this, the class is at the center of any object-oriented language.

Though classes are a part of Swift, you’ll find they are an extremely small part of the
standard library. Instead, Swift is built primarily on a collection of structs and
protocols. You can see the significance of this in many of Swift’s core types, such as
Int and Array. Consider the definition of Array:

// From the Swift standard library
public struct Array<Element> : RandomAccessCollection,
MutableCollection {
 // ...
}

The fact that Array is a struct means it’s a value type, of course, but it also means
that it can’t be subclassed nor can it be a superclass. Instead of inheriting behaviors
from common base classes, Array adopts protocols to define many of its more
common capabilities.

Array is a MutableCollection, which is also a Collection. Thanks to protocol
extensions, Array will get numerous properties and methods common to every
Collection, such as first, count or isEmpty — simply by being a Collection.

Swift Apprentice Chapter 25: Protocol-Oriented Programming

raywenderlich.com 471

Thanks to many protocol extensions with generic constraints, you can split() an
Array or find the index(of:) an element, assuming the type of that element
conforms to Equatable.

These implementations are all defined within protocol extensions in the Swift
standard library. By implementing them in protocol extensions, these behaviors can
be treated as mix-ins, and do not need to be explicitly reimplemented on each
adopting type.

This decoration of defined behaviors lets Array and Dictionary — yet another
Collection — be similar in some respects and different in others. Had Swift used
subclassing, Dictionary and Array would either share one common base class or
none at all. With protocols and protocol-oriented programming, you can treat them
both as a Collection.

With a design centered around protocols rather than specific classes, structs or
enums, your code is instantly more portable and decoupled — methods now apply to
a range of types instead of one specific type. Your code is also more cohesive because
it operates only on the properties and methods within the protocol you’re extending
and its type constraints. And it ignores the internal details of any type that conforms
to it.

Understanding protocol-oriented programming is a powerful skill that will help you
become a better Swift developer, and give you new ways to think about how to design
your code.

Note: More neutral-minded Swift developers will call Swift a “multi-
paradigm” language. You’ve already seen inheritance and object-oriented
techniques, and now protocol-oriented programming; Swift easily handles
both!

Protocols and protocol oriented programming are at the foundation of the Swift
language. The generics system, for example, uses protocols to specify with precision
the type requirements of a generic type in use. If you have m data structures and n
algorithms that operate on those data structures, in some languages, you need m*n
blocks of code to implement them. With Swift, using protocols you only need to write
m+n blocks with no repetition. Protocol-oriented programming gives you all of the
advantages of typical object-oriented programming while dodging most of the
pitfalls.

Swift Apprentice Chapter 25: Protocol-Oriented Programming

raywenderlich.com 472

Next time you are faced with a programming task, see if you can figure out the
underlying protocols at play. Doing so will lead you to a more flexible and extensible
solution. Initially, you might find it easier to get something concrete working first
and then extract the protocols. As you get more experienced, you may start seeing
the protocols before you even begin coding just as easily as Neo can see the red
dress.

Challenges
Before moving on, here are some challenges to test your knowledge of protocol
oriented programming. It is best if you try to solve them yourself, but solutions are
available if you get stuck. These came with the download or are available at the
printed book’s source code link listed in the introduction.

Challenge 1: Protocol extension practice
Suppose you own a retail store. You have food items, clothes and electronics. Begin
with an Item protocol:

protocol Item {
 var name: String { get }
 var clearance: Bool { get }
 var msrp: Double { get } // Manufacturer’s Suggested Retail
Price
 var totalPrice: Double { get }
}

Fulfill the following requirements using primarily what you’ve learned about
protocol-oriented programming. In other words, minimize the code in your classes,
structs or enums.

• Clothes do not have sales tax, but all other items have 7.5% sales tax.

• When on clearance, food items are discounted 50%, clothes are discounted 25%
and electronics are discounted 5%.

• Items should implement CustomStringConvertible and return name. Food items
should also print their expiration dates.

Swift Apprentice Chapter 25: Protocol-Oriented Programming

raywenderlich.com 473

Challenge 2: Doubling values
Write a protocol extension on Sequence named double() that only applies to
sequences of numeric elements. Make it return an array where each element is twice
the element in the sequence. Test your implementation on an array of Int and an
array of Double, then see if you can try it on an array of String.

Hints:

• Numeric values implement the protocol Numeric.

• Your method signature should be double() -> [Element]. The type [Element]
is an array of whatever type the Sequence holds, such as String or Int.

Key points
• Protocol extensions let you write implementation code for protocols, and even

write default implementations on methods required by a protocol.

• Protocol extensions are the primary driver for protocol-oriented programming
and let you write code that will work on any type that conforms to a protocol.

• Type constraints on protocol extensions provide additional context and let you
write more specialized implementations.

• You can decorate a type with traits and mixins to extend behavior without
requiring inheritance.

• Protocols, when used well, promote code reuse and encapsulation.

Swift Apprentice Chapter 25: Protocol-Oriented Programming

raywenderlich.com 474

26Chapter 26: Advanced
Protocols & Generics
By Ehab Amer

This chapter covers more advanced uses of protocols and generics. Expanding on
what you’ve learned in previous chapters, you’ll make protocols with constraints to
Self, other associated types and even recursive constraints.

Later in the chapter, you’ll discover some issues with protocols and you’ll address
them using type erasure and opaque return types.

raywenderlich.com 475

Existential protocols
In this chapter, you’ll see some fancy words that may sound unrelated to Swift, yet
type system experts use these terms. It'll be good for you to know this terminology
and realize it isn’t a big deal.

Existential type is one such term. Fortunately, it’s a name for something you already
know and have used. It’s simply a concrete type accessed through a protocol.

Example time. Put this into a playground:

protocol Pet {
 var name: String { get }
}
struct Cat: Pet {
 var name: String
}

In this code, the Pet protocol says that pets must have a name. Then you created a
concrete type Cat which conforms to Pet. Now create a Cat like so:

var somePet: Pet = Cat(name: "Whiskers")

Here, you defined the variable somePet with a type of Pet instead of the concrete
type Cat. Here Pet is an existential type — it’s an abstract concept, a protocol, that
refers to a concrete type, a struct, that exists.

To keep things simple, from now on we’ll just call it a protocol type. These protocol
types look a lot like abstract base classes in object-oriented programming, but you
can apply them to enums and structs as well.

Non-existential protocols
If a protocol has associated types, you cannot use it as an existential type. For
example, if you change Pet like so:

protocol Pet {
 associatedtype Food
 var name: String { get }
}

Swift Apprentice Chapter 26: Advanced Protocols & Generics

raywenderlich.com 476

Suddenly, you can no longer instantiate Whiskers.

Despite this shortcoming, associated types are super useful. Consider this example
from Chapter 16, “Protocols”:

protocol WeightCalculatable {
 associatedtype WeightType
 var weight: WeightType { get }
}

This protocol defines having a weight without fixing weight to one specific type. You
can create a class (or a struct) that sets the WeightType as an Int or a Double or
anything you want. For example:

class HeavyThing: WeightCalculatable {
 // This heavy thing only needs integer accuracy
 typealias WeightType = Int

 var weight: Int {
 100
 }
}

class LightThing: WeightCalculatable {
 // This light thing needs decimal places
 typealias as WeightType = Double

 var weight: Double {
 0.0025
 }
}

The emphasis here is on the anything you want part. There is nothing stopping you
from defining WeightType as a string, or even something else entirely. :]

class StringWeightThing: WeightCalculatable {
 typealias WeightType = String

 var weight: String {
 "That doesn't make sense"
 }
}

Swift Apprentice Chapter 26: Advanced Protocols & Generics

raywenderlich.com 477

class CatWeightThing: WeightCalculatable {
 typealias WeightType = Cat

 var weight: Cat {
 Cat(name: "What is this cat doing here?")
 }
}

Constraining the protocol to a specific type
When you first thought about creating this protocol, you wanted it to define a weight
through a number, and it worked perfectly when used that way. It simply made sense!

But that's when you were using your own protocol. If you wanted to write generic
code around it, and the generic system knows nothing about the capabilities of
WeightType, you can't really do any sort of computation with it.

In this case, you want to add a constraint that requires WeightCalculatable to be
Numeric:

protocol WeightCalculatable {
 associatedtype WeightType: Numeric
 var weight: WeightType { get }
}

This will make strings and cats invalid weight types:

You can now write generic functions that use weights in computations. Why not start
making good use of that? Write this:

extension WeightCalculatable {
 static func +(left: Self, right: Self) -> WeightType {
 left.weight + right.weight
 }
}
var heavy1 = HeavyThing()
var heavy2 = HeavyThing()
heavy1 + heavy2 // 200

var light1 = LightThing()
heavy1 + light1 // the compiler detects your coding error

Swift Apprentice Chapter 26: Advanced Protocols & Generics

raywenderlich.com 478

Now, anything that conforms to WeightCalculatable must have a WeightType that
represents a number. You can add the numeric capabilities directly into the protocol.

Also, notice that when you tried to add two different weight types, it didn't work.
That's because the + operator has two parameters of the same type: Self. This is the
type that conforms to the protocol.

Expressing relationships between types
Next, look at how you can use type constraints to express relationships between
types.

Suppose you want to model a production factory. Enter this code to get started:

protocol Product {}

protocol ProductionLine {
 func produce() -> Product
}

protocol Factory {
 var productionLines: [ProductionLine] {get}
}

extension Factory {
 func produce() -> [Product] {
 var items: [Product] = []
 productionLines.forEach { items.append($0.produce()) }
 print("Finished Production")
 print("-------------------")
 return items
 }
}

Here, you define protocols for Product, the ProductionLine that produces products,
and Factory, which has production lines. You also extend Factory with produce(),
which makes one product for every production line in the factory.

Next, define some concrete types:

struct Car: Product {
 init() {
 print("Producing one awesome Car * ")
 }
}

struct CarProductionLine: ProductionLine {
 func produce() -> Product {

Swift Apprentice Chapter 26: Advanced Protocols & Generics

raywenderlich.com 479

 Car()
 }
}

struct CarFactory: Factory {
 var productionLines: [ProductionLine] = []
}

You now have concrete types for the Product, ProductionLine, and Factory. You
can now start the manufacturing process:

var carFactory = CarFactory()
carFactory.productionLines = [CarProductionLine(),
CarProductionLine()]
carFactory.produce()

With this code, you created a factory, gave it two production lines and told it to start
production one time. So far, so good! Now try this:

struct Chocolate: Product {
 init() {
 print("Producing one chocolate bar + ")
 }
}

struct ChocolateProductionLine: ProductionLine {
 func produce() -> Product {
 Chocolate()
 }
}

var oddCarFactory = CarFactory()
oddCarFactory.productionLines = [CarProductionLine(),
ChocolateProductionLine()]
oddCarFactory.produce()

What's chocolate doing in the car factory? How does this make sense?

The car factory has no problem with a mix of car and chocolate production lines,
since they all conform to ProductionLine.

But the FDA would never approve of chocolate produced in the same factory that
makes cars. How can you specify that each factory should only produce one type of
product?

First, start fresh with a new set of protocols, this time using associated types:

protocol Product {

Swift Apprentice Chapter 26: Advanced Protocols & Generics

raywenderlich.com 480

 init()
}

protocol ProductionLine {
 associatedtype ProductType
 func produce() -> ProductType
}

protocol Factory {
 associatedtype ProductType
 func produce() -> [ProductType]
}

Product now includes init(), so the production line can create new products
without having to know the concrete type of that product.

Your Car and Chocolate types remain the same:

struct Car: Product {
 init() {
 print("Producing one awesome Car * ")
 }
}

struct Chocolate: Product{
 init() {
 print("Producing one Chocolate bar + ")
 }
}

Instead of creating specific production lines and factories for cars and chocolates,
you can create a single, generic production line and factory:

struct GenericProductionLine<P: Product>: ProductionLine {
 func produce() -> P {
 P()
 }
}

struct GenericFactory<P: Product>: Factory {
 var productionLines: [GenericProductionLine<P>] = []

 func produce() -> [P] {
 var newItems: [P] = []
 productionLines.forEach { newItems.append($0.produce()) }
 print("Finished Production")
 print("-------------------")
 return newItems
 }

Swift Apprentice Chapter 26: Advanced Protocols & Generics

raywenderlich.com 481

}

Note how you use the generic type P to make sure the production line produces the
same ProductType as the factory. You also constrain P to Product, so that it must
have a default initializer.

You can now create a car factory as follows:

var carFactory = GenericFactory<Car>()
carFactory.productionLines = [GenericProductionLine<Car>(),
GenericProductionLine<Car>()]
carFactory.produce()

To create a chocolate factory, simply change <Car> to <Chocolate>.

Mini-exercise
Here’s a little challenge for you. Try to see if you can do the following two things:

1. Instead of supplying the factory with production lines through the property
productionLines, allow the factory to increase its own production lines.

2. Instead of the factory creating the products and doing nothing with them, the
factory should store the items in a warehouse instead.

Recursive protocols
You can use a protocol type within that protocol itself, which is called a recursive
protocol. For example, you can model a graph type as follows:

protocol GraphNode {
 var connectedNodes: [GraphNode] { get set }
}

A GraphNode is a type that has a setter and getter to an array of itself.

As another example, consider a Matryoshka doll, aka the Russian doll. The wooden
doll is hollow and, when you open it up, you find another doll that when you open,
contains another doll, that when you open contains another doll, that when you open
contains another doll. It's fun for all ages.

Next, you’ll model a doll like that with Swift types.

Swift Apprentice Chapter 26: Advanced Protocols & Generics

raywenderlich.com 482

protocol Matryoshka {
 var inside: Matryoshka {get set}
}

class HandCraftedMatryoshka: Matryoshka {
 var inside: Matryoshka?
}

class MachineCraftedMatryoshka: Matryoshka {
 var inside: Matryoshka?
}

Here, you can see two different classes for the doll. One is hand-crafted and the other
is machine-crafted. Their shapes are similar, but not identical.

var handMadeDoll = HandCraftedMatryoshka()
var machineMadeDoll = MachineCraftedMatryoshka()
handMadeDoll.inside = machineMadeDoll // This shouldn't fit

When you have two different types of dolls and try to put one inside of the other, it
shouldn't fit. Both dolls have different ratios and different designs.

Earlier, you learned about Self, which is useful here:

protocol Matryoshka: AnyObject {
 var inside: Self? { get set }
}

final class HandCraftedMatryoshka: Matryoshka {
 var inside: HandCraftedMatryoshka?
}

final class MachineCraftedMatryoshka: Matryoshka {
 var inside: MachineCraftedMatryoshka?
}

Notice the addition of the class constraint, AnyObject, on the protocol and the
final keyword on the classes.

Structs can't have recursive properties because they are value types. Therefore, you
must implement Matryoshkas as classes.

Also, the final keyword ensures that a subclass can’t override the property and
return a different type.

Swift Apprentice Chapter 26: Advanced Protocols & Generics

raywenderlich.com 483

With these changes, the code that mixed both types of dolls is now invalid:

handMadeDoll.inside = machineMadeDoll // compile error

Once again, the Swift compiler saves you from doing something nonsensical that
could lead to a subtle, hard-to-find bug.

Heterogeneous collections
Swift collections are homogeneous; that is, their elements must be of a single type.
In this section, you'll learn how to use the special type Any to simulate
heterogeneous collections. You’ll use WeightCalculatable as an example:

protocol WeightCalculatable {
 associatedtype WeightType: Numeric
 var weight: WeightType { get }
}

Try to define an array of WeightCalculatable objects:

var array1: [WeightCalculatable] = [] // compile error
var array2: [HeavyThing] = []
var array3: [LightThing] = []

In those three examples, the first only refers to the protocol. The others refer to the
concrete class implementing the protocol.

Unfortunately, the first example doesn't work because WeightCalculatable is an
incomplete type. It has a hole inside it because it requires you to specify the
associated type.

Next, add a VeryHeavyThing and try to mix heavy things and very heavy things in
the same array:

class VeryHeavyThing: WeightCalculatable {
 // This heavy thing only needs integer accuracy
 typealias WeightType = Int

 var weight: Int {
 9001
 }
}
var heavyList = [HeavyThing(), VeryHeavyThing()] // error

Swift Apprentice Chapter 26: Advanced Protocols & Generics

raywenderlich.com 484

Xcode now suggests you declare this array as [Any]:

Any can stand in for any type, so it works for creating a heterogeneous array. It does,
however, come with a cost.

What if you don't want to completely lose all type information about your elements?
It might be possible to test each element with as?, but that gets very messy and
error-prone. In this example, you know that both heavy things have the same
associated type Int. Can you somehow leverage this knowledge?

This is where type erasures come to the rescue.

Type erasure
When you want to create a list of different items, you should define the list with a
type that each element will conform to.

Or you may take a shortcut and say [Any]. But then you can't know anything about
what’s in the array without explicitly downcasting everything.

With this design, you might unpleasantly discover that the user added types that
aren't supposed to be there at all. This is possible because Any erases all type
information and now accepts any instance.

To get around this, you can create a custom stand-in type that erases most of the
details but keeps the important bits.

For example, here's a type you can use as a superclass for heavy things:

class AnyHeavyThing<T: Numeric>: WeightCalculatable {
 var weight: T {
 123
 }
}

You now have a concrete type that any HeavyThing should subclass.

class HeavyThing2: AnyHeavyThing<Int> {
 override var weight: Int {
 100

Swift Apprentice Chapter 26: Advanced Protocols & Generics

raywenderlich.com 485

 }
}

class VeryHeavyThing2: AnyHeavyThing<Int> {
 override var weight: Int {
 9001
 }
}

The key observation is that classes are reference types with the same size, no matter
the derived class. This base class type erases the details of the derived classes. While
this approach requires some extra typing, it’s better than having no type information
at all.

var heavyList2 = [HeavyThing2(), VeryHeavyThing2()]
heavyList2.forEach { print($0.weight) }

Currently, Swift doesn’t let you define [AnyHeavyThing<Numeric>] since each
element could potentially have a different size and type. You’re only allowed to use
concrete types or existential protocol types.

Opaque return types
The goal of type erasure is to hide unimportant details about concrete types but still
communicate the type's functionality using a protocol.

You can illustrate this using the production factory example you saw earlier.

Create a class type that builds a production factory. and decide in this class what
products the factory will create. It handles creating the production lines, the
inventory, the employees, the budget... all the hassle in that factory.

Your colleague working on that project shouldn't have to know all these
implementation details. Only that there’s a factory and it can produce products.

Before going into the implementation, recall the previous example.

var carFactory = GenericFactory<Car>()
carFactory.productionLines = [GenericProductionLine<Car>(),
GenericProductionLine<Car>()]
carFactory.produce()

var chocolateFactory = GenericFactory<Chocolate>()
chocolateFactory.productionLines =
[GenericProductionLine<Chocolate>(),

Swift Apprentice Chapter 26: Advanced Protocols & Generics

raywenderlich.com 486

GenericProductionLine<Chocolate>()]
chocolateFactory.produce()

This is how you built the factory that didn't allow you to add the wrong production.
It worked perfectly, but whoever is holding the instance of the factory knows exactly
what kind of factory it is. This might be more information than you want to expose.

Ínstead, try constructing a mysterious factory.

func makeFactory() -> Factory { // compile error
 GenericFactory<Car>()
}

let myFactory = makeFactory()

Oh... Swift will not allow the use of Factory like this because of its associated type.
This is exactly the problem that opaque return types solve. By changing the return
type to some Factory, the errors will disappear.

func makeFactory() -> some Factory { // compiles!
 GenericFactory<Car>()
}

The compiler, despite knowing the exact concrete type you returned, hides this
information behind the Factory protocol. In other words, it knows it’s a
GenericFactory<Car>, but all your users see is that it is a Factory.

To underscore this fact, try writing the following function:

func makeFactory(isChocolate: Bool) -> some Factory {
 if isChocolate {
 return GenericFactory<Chocolate>()
 }
 else {
 return GenericFactory<Car>()
 }
}

This will not compile because the compiler must be able to determine the concrete
type at compile time.

Only knowing that it is a Factory limits what operations you can do with it, in this
case, you probably want to return the factory pre-populated with some production
lines like so:

func makeFactory(numberOfLines: Int) -> some Factory {
 let factory = GenericFactory<Car>()

Swift Apprentice Chapter 26: Advanced Protocols & Generics

raywenderlich.com 487

 for _ in 0..<numberOfLines {
 factory.productionLines.append(GenericProductionLine<Car>())
 }
 return factory
}

You can also return a value as an object that implements many protocols:

func makeEquatableNumeric() -> some Numeric & Equatable {
 return 1
}

let someVar = makeEquatableNumeric()
let someVar2 = makeEquatableNumeric()

print(someVar == someVar2) // prints true
print(someVar + someVar2) // prints 2
print(someVar > someVar2) // error

The first two conditions work normally. The first requires conformance to
Equatable, which is explicitly defined by the return type. The same goes for the
second line, which requires Numeric. But the third needs conformance to
Comparable. Although the actual type is a Comparable integer, this information is
not exposed in the return type.

Opaque return types allow you to use protocols that you could only use as generic
constraints, just like a normal existential type.

Challenges
Congratulations on making it this far! But before you come to the end of this chapter,
here are some challenges to test your knowledge of advanced protocols and generics.
It’s best if you try to solve them yourself, but solutions are available if you get stuck.
You can find the solutions with the download or at the printed book’s source code
link listed in the introduction.

Challenge 1: Robot vehicle builder
Using protocols, define a robot that makes vehicle toys.

• Each robot is able to assemble a different number of pieces per minute. For
example, Robot-A can assemble ten pieces per minute, while Robot-B can assemble
five.

Swift Apprentice Chapter 26: Advanced Protocols & Generics

raywenderlich.com 488

• Each robot type is only able to build a single type of toy.

• Each toy type has a price value.

• Each toy type has a different number of pieces. You tell the robot how long it
should operate and it will provide the finished toys.

• Add a method to tell the robot how many toys to build. It will build them and say
how much time it needed.

Challenge 2: Toy train builder
Declare a function that constructs robots that make toy trains.

• A train has 75 Pieces.

• A train robot can assemble 500 pieces per minute.

• Use an opaque return type to hide the type of robot you return.

Challenge 3: Monster truck toy
Create a monster truck toy that has 120 pieces and a robot to make this toy. The
robot is less sophisticated and can only assemble 200 pieces per minute. Next,
change the makeToyBuilder() function to return this new robot.

Challenge 4: Shop robot
Define a shop that uses a robot to make the toy that this shop will sell.

• This shop should have two inventories: a display and a warehouse.

• There’s a limit to the number of items on the display, but there’s no limit on the
warehouse’s size.

• In the morning of every day, the warehouse fills its display.

• Each customer buys an average of 1.5 toys.

• If the shop needs the robot, rent the robot and operate it for the duration required.

Swift Apprentice Chapter 26: Advanced Protocols & Generics

raywenderlich.com 489

• To reduce the running costs of the operations, the robot is set to only work when
the contents of the warehouse are less than the size of the display. The robot
should produce enough toys so that the inventory is twice the size of the display.

• The shop has a startDay(numberOfVisitors: Int) method. This will first fill the
display from the inventory, then sell items from the display based on the number
of customers and finally produce new toys, if needed.

Key points
• You can use Protocols as existentials and as generic constraints.

• Existentials let you use a type, like a base class, polymorphically.

• Generic constraints express the capabilities required by a type, but you can't use
them polymorphically.

• Associated types make protocols generic. They provide great flexibility while still
maintaining the type strictness.

• Constraints can be used in many contexts, even recursively.

• Type erasure is a way to hide concrete details while preserving important type
information.

• Opaque return types let you return only protocol information from a concrete
type.

• The more generic you write your code, the more places you will be able to use it.

And that’s a wrap! Generics will help you make your code less coupled and less
dependent on specific types. Protocols, extensions and associated types will allow
you to write composable and reusable types – types that can be used together in a
variety of contexts to solve a wider range of problems.

Swift Apprentice Chapter 26: Advanced Protocols & Generics

raywenderlich.com 490

CConclusion

We hope you learned a lot about Swift in this book — and had some fun in the
process! Swift is filled with language features and programming paradigms, and we
hope you now feel comfortable enough with the language to move on to building
bigger things.

With the language fundamentals under your belt, you’re ready to explore advanced
frameworks like SwiftUI to build iOS apps, macOS apps and more. You might want to
explore Swift on the server or even look at how Swift is being used in bleeding edge
machine learning research.

If you have any questions or comments as you continue to use Swift, please stop by
our forums at https://forums.raywenderlich.com.

Thank you again for purchasing this book. Your continued support is what makes the
tutorials, books, videos, conferences and other things we do at raywenderlich.com
possible — we truly appreciate it!

Wishing you all the best in your continued Swift adventures,

– The Swift Apprentice team

raywenderlich.com 491

	About the Cover
	About the Authors
	About the Editors
	About the Artist

	What You Need
	Book License
	Book Source Code & Forums
	Introduction
	Who this book is for
	How to use this book
	What’s in store
	Acknowledgments

	Chapter 1: Expressions, Variables & Constants
	How a computer works
	Playgrounds
	Getting started with Swift
	Printing out
	Arithmetic operations
	Math functions
	Naming data
	Increment and decrement
	Challenges
	Key points

	Chapter 2: Types & Operations
	Type conversion
	Strings
	Strings in Swift
	Tuples
	A whole lot of number types
	Type aliases
	A peek behind the curtains: Protocols
	Challenges
	Key points

	Chapter 3: Basic Control Flow
	Comparison operators
	The if statement
	Loops
	Challenges
	Key points

	Chapter 4: Advanced Control Flow
	Countable ranges
	For loops
	Switch statements
	Challenges
	Key points

	Chapter 5: Functions
	Function basics
	Functions as variables
	Commenting your functions
	Challenges
	Key points

	Chapter 6: Optionals
	Introducing nil
	Introducing optionals
	Unwrapping optionals
	Introducing guard
	Nil coalescing
	Challenges
	Key points

	Chapter 7: Arrays, Dictionaries & Sets
	Mutable versus immutable collections
	Arrays
	What is an array?
	When are arrays useful?
	Creating arrays
	Accessing elements
	Modifying arrays
	Iterating through an array
	Running time for array operations
	Dictionaries
	Creating dictionaries
	Accessing values
	Modifying dictionaries
	Sets
	Key points
	Challenges

	Chapter 8: Collection Iteration with Closures
	Closure basics
	Custom sorting with closures
	Iterating over collections with closures
	Challenges
	Key points

	Chapter 9: Strings
	Strings as collections
	Strings as bi-directional collections
	Raw strings
	Substrings
	Character properties
	Encoding
	Challenges
	Key points

	Chapter 10: Structures
	Introducing structures
	Accessing members
	Introducing methods
	Structures as values
	Structures everywhere
	Conforming to a protocol
	Challenges
	Key points

	Chapter 11: Properties
	Stored properties
	Computed properties
	Type properties
	Property observers
	Lazy properties
	Challenges
	Key points

	Chapter 12: Methods
	Method refresher
	Introducing self
	Introducing initializers
	Introducing mutating methods
	Type methods
	Adding to an existing structure with extensions
	Challenges
	Key points

	Chapter 13: Classes
	Creating classes
	Reference types
	Understanding state and side effects
	Extending a class using an extension
	When to use a class versus a struct
	Challenges
	Key points

	Chapter 14: Advanced Classes
	Introducing inheritance
	Inheritance and class initialization
	When and why to subclass
	Understanding the class lifecycle
	Challenges
	Key points

	Chapter 15: Enumerations
	Your first enumeration
	Raw values
	Associated values
	Enumeration as state machine
	Iterating through all cases
	Enumerations without any cases
	Optionals
	Challenges
	Key points

	Chapter 16: Protocols
	Introducing protocols
	Implementing protocols
	Protocols in the Standard Library
	Challenge
	Key points

	Chapter 17: Generics
	Introducing generics
	Anatomy of generic types
	Arrays
	Dictionaries
	Optionals
	Generic function parameters
	Challenge
	Key points

	Chapter 18: Access Control, Code Organization and Testing
	Introducing access control
	Organizing code into extensions
	Swift Package Manager
	Testing
	Challenges
	Key points

	Chapter 19: Custom Operators, Subscripts & Keypaths
	Custom operators
	Subscripts
	Keypaths
	Challenges
	Key points

	Chapter 20: Pattern Matching
	Introducing patterns
	Basic pattern matching
	Patterns
	Advanced patterns
	Programming exercises
	Expression pattern
	Challenges
	Key points

	Chapter 21: Error Handling
	What is error handling?
	First level error handling with optionals
	Error protocol
	Throwing errors
	Handling errors
	Advanced error handling
	Rethrows
	Error handling for asynchronous code
	Challenges
	Key points

	Chapter 22: Encoding & Decoding Types
	Encodable and Decodable protocols
	What is Codable?
	Automatic encoding and decoding
	Encoding and decoding custom types
	Renaming properties with CodingKeys
	Manual encoding and decoding
	Writing tests for the Encoder and Decoder
	Challenges
	Key points

	Chapter 23: Memory Management
	Reference cycles for classes
	Reference cycles for closures
	Challenges
	Key points

	Chapter 24: Value Types & Value Semantics
	Value types vs. reference types
	Defining value semantics
	Implementing value semantics
	Recipes for value semantics
	Challenges
	Key points
	Where to go from here?

	Chapter 25: Protocol-Oriented Programming
	Introducing protocol extensions
	Default implementations
	Understanding protocol extension dispatch
	Type constraints
	Protocol-oriented benefits
	Why Swift is a protocol-oriented language
	Challenges
	Key points

	Chapter 26: Advanced Protocols & Generics
	Existential protocols
	Non-existential protocols
	Recursive protocols
	Heterogeneous collections
	Type erasure
	Opaque return types
	Challenges
	Key points

	Conclusion

